![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > absnsb | Structured version Visualization version GIF version |
Description: If the class abstraction {𝑥 ∣ 𝜑} associated with the wff 𝜑 is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
absnsb | ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2721 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
2 | velsn 4664 | . . . . 5 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
3 | 1, 2 | bibi12i 339 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑦}) ↔ (𝜑 ↔ 𝑥 = 𝑦)) |
4 | biimpr 220 | . . . 4 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | |
5 | 3, 4 | sylbi 217 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑦}) → (𝑥 = 𝑦 → 𝜑)) |
6 | 5 | alimi 1809 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑦}) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
7 | nfab1 2910 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
8 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑥{𝑦} | |
9 | 7, 8 | cleqf 2940 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑦})) |
10 | sb6 2085 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
11 | 6, 9, 10 | 3imtr4i 292 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 [wsb 2064 ∈ wcel 2108 {cab 2717 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sn 4649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |