Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > absnsb | Structured version Visualization version GIF version |
Description: If the class abstraction {𝑥 ∣ 𝜑} associated with the wff 𝜑 is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
absnsb | ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2720 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
2 | velsn 4532 | . . . . 5 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
3 | 1, 2 | bibi12i 343 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑦}) ↔ (𝜑 ↔ 𝑥 = 𝑦)) |
4 | biimpr 223 | . . . 4 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | |
5 | 3, 4 | sylbi 220 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑦}) → (𝑥 = 𝑦 → 𝜑)) |
6 | 5 | alimi 1818 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑦}) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
7 | nfab1 2901 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
8 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑥{𝑦} | |
9 | 7, 8 | cleqf 2930 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑦})) |
10 | sb6 2095 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
11 | 6, 9, 10 | 3imtr4i 295 | 1 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1540 = wceq 1542 [wsb 2074 ∈ wcel 2114 {cab 2716 {csn 4516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-v 3400 df-sn 4517 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |