| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euxfrw | Structured version Visualization version GIF version | ||
| Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Version of euxfr 3711 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by NM, 14-Nov-2004.) Avoid ax-13 2375. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| euxfrw.1 | ⊢ 𝐴 ∈ V |
| euxfrw.2 | ⊢ ∃!𝑦 𝑥 = 𝐴 |
| euxfrw.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| euxfrw | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euxfrw.2 | . . . . . 6 ⊢ ∃!𝑦 𝑥 = 𝐴 | |
| 2 | euex 2575 | . . . . . 6 ⊢ (∃!𝑦 𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ∃𝑦 𝑥 = 𝐴 |
| 4 | 3 | biantrur 530 | . . . 4 ⊢ (𝜑 ↔ (∃𝑦 𝑥 = 𝐴 ∧ 𝜑)) |
| 5 | 19.41v 1948 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ (∃𝑦 𝑥 = 𝐴 ∧ 𝜑)) | |
| 6 | euxfrw.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | pm5.32i 574 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜓)) |
| 8 | 7 | exbii 1847 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 9 | 4, 5, 8 | 3bitr2i 299 | . . 3 ⊢ (𝜑 ↔ ∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 10 | 9 | eubii 2583 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 11 | euxfrw.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 12 | 1 | eumoi 2577 | . . 3 ⊢ ∃*𝑦 𝑥 = 𝐴 |
| 13 | 11, 12 | euxfr2w 3708 | . 2 ⊢ (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦𝜓) |
| 14 | 10, 13 | bitri 275 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2566 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-mo 2538 df-eu 2567 df-cleq 2726 df-clel 2808 |
| This theorem is referenced by: moxfr 42666 |
| Copyright terms: Public domain | W3C validator |