Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1orn | Structured version Visualization version GIF version |
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1orn | ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 6721 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹)) | |
2 | eqid 2738 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
3 | df-3an 1088 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹) ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | mpbiran2 707 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
5 | 1, 4 | bitri 274 | 1 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ◡ccnv 5588 ran crn 5590 Fun wfun 6427 Fn wfn 6428 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: f1f1orn 6727 infdifsn 9415 efopnlem2 25812 cycpmcl 31383 |
Copyright terms: Public domain | W3C validator |