MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orn Structured version   Visualization version   GIF version

Theorem f1orn 6726
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1orn (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))

Proof of Theorem f1orn
StepHypRef Expression
1 dff1o2 6721 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = ran 𝐹))
2 eqid 2738 . . 3 ran 𝐹 = ran 𝐹
3 df-3an 1088 . . 3 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ ((𝐹 Fn 𝐴 ∧ Fun 𝐹) ∧ ran 𝐹 = ran 𝐹))
42, 3mpbiran2 707 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
51, 4bitri 274 1 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  ccnv 5588  ran crn 5590  Fun wfun 6427   Fn wfn 6428  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  f1f1orn  6727  infdifsn  9415  efopnlem2  25812  cycpmcl  31383
  Copyright terms: Public domain W3C validator