MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orn Structured version   Visualization version   GIF version

Theorem f1orn 6769
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1orn (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))

Proof of Theorem f1orn
StepHypRef Expression
1 dff1o2 6764 . 2 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = ran 𝐹))
2 eqid 2730 . . 3 ran 𝐹 = ran 𝐹
3 df-3an 1088 . . 3 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ ((𝐹 Fn 𝐴 ∧ Fun 𝐹) ∧ ran 𝐹 = ran 𝐹))
42, 3mpbiran2 710 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
51, 4bitri 275 1 (𝐹:𝐴1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  ccnv 5613  ran crn 5615  Fun wfun 6471   Fn wfn 6472  1-1-ontowf1o 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1781  df-cleq 2722  df-ss 3917  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484
This theorem is referenced by:  f1f1orn  6770  infdifsn  9542  efopnlem2  26586  cycpmcl  33075
  Copyright terms: Public domain W3C validator