MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o2 Structured version   Visualization version   GIF version

Theorem dff1o2 6493
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dff1o2
StepHypRef Expression
1 df-f1o 6237 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 df-f1 6235 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
3 df-fo 6236 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
42, 3anbi12i 626 . . 3 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
5 anass 469 . . . 4 (((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))))
6 3anan12 1089 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
76anbi1i 623 . . . . 5 (((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴𝐵) ↔ ((Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴𝐵))
8 eqimss 3948 . . . . . . . 8 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
9 df-f 6234 . . . . . . . . 9 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
109biimpri 229 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → 𝐹:𝐴𝐵)
118, 10sylan2 592 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
12113adant2 1124 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
1312pm4.71i 560 . . . . 5 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴𝐵))
14 ancom 461 . . . . 5 ((𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ ((Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴𝐵))
157, 13, 143bitr4ri 305 . . . 4 ((𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
165, 15bitri 276 . . 3 (((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
174, 16bitri 276 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
181, 17bitri 276 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1080   = wceq 1522  wss 3863  ccnv 5447  ran crn 5449  Fun wfun 6224   Fn wfn 6225  wf 6226  1-1wf1 6227  ontowfo 6228  1-1-ontowf1o 6229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-in 3870  df-ss 3878  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237
This theorem is referenced by:  dff1o3  6494  dff1o4  6496  f1orn  6498  tz7.49c  7938  fiint  8646  symgfixelsi  18299  dfrelog  24835  adj1o  29367  fresf1o  30071  f1mptrn  30075  esumc  30932  ntrneinex  39938  stoweidlem39  41893
  Copyright terms: Public domain W3C validator