Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o2 Structured version   Visualization version   GIF version

Theorem dff1o2 6611
 Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dff1o2
StepHypRef Expression
1 df-f1o 6350 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 df-f1 6348 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
3 df-fo 6349 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
42, 3anbi12i 629 . . 3 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
5 anass 472 . . . 4 (((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))))
6 3anan12 1093 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
76anbi1i 626 . . . . 5 (((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴𝐵) ↔ ((Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴𝐵))
8 eqimss 4009 . . . . . . . 8 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
9 df-f 6347 . . . . . . . . 9 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
109biimpri 231 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → 𝐹:𝐴𝐵)
118, 10sylan2 595 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
12113adant2 1128 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
1312pm4.71i 563 . . . . 5 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴𝐵))
14 ancom 464 . . . . 5 ((𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ ((Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴𝐵))
157, 13, 143bitr4ri 307 . . . 4 ((𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
165, 15bitri 278 . . 3 (((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
174, 16bitri 278 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
181, 17bitri 278 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ⊆ wss 3919  ◡ccnv 5541  ran crn 5543  Fun wfun 6337   Fn wfn 6338  ⟶wf 6339  –1-1→wf1 6340  –onto→wfo 6341  –1-1-onto→wf1o 6342 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-in 3926  df-ss 3936  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350 This theorem is referenced by:  dff1o3  6612  dff1o4  6614  f1orn  6616  tz7.49c  8078  fiint  8792  symgfixelsi  18563  dfrelog  25160  adj1o  29680  fresf1o  30387  f1mptrn  30391  esumc  31367  ntrneinex  40699  stoweidlem39  42607
 Copyright terms: Public domain W3C validator