Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmcl Structured version   Visualization version   GIF version

Theorem cycpmcl 33132
Description: Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmcl.s 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
cycpmcl (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))

Proof of Theorem cycpmcl
StepHypRef Expression
1 f1oi 6861 . . . . 5 ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊)
21a1i 11 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊))
3 tocycfv.w . . . . . . . . 9 (𝜑𝑊 ∈ Word 𝐷)
4 1zzd 12628 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
5 cshwf 14823 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
63, 4, 5syl2anc 584 . . . . . . . 8 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
76ffnd 6712 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
8 tocycfv.1 . . . . . . . . . 10 (𝜑𝑊:dom 𝑊1-1𝐷)
9 df-f1 6541 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
108, 9sylib 218 . . . . . . . . 9 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1110simprd 495 . . . . . . . 8 (𝜑 → Fun 𝑊)
12 eqid 2736 . . . . . . . . 9 (𝑊 cyclShift 1) = (𝑊 cyclShift 1)
13 cshinj 14834 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → ((𝑊 cyclShift 1) = (𝑊 cyclShift 1) → Fun (𝑊 cyclShift 1)))
1412, 13mpi 20 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → Fun (𝑊 cyclShift 1))
153, 11, 4, 14syl3anc 1373 . . . . . . 7 (𝜑 → Fun (𝑊 cyclShift 1))
16 f1orn 6833 . . . . . . 7 ((𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1) ↔ ((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ Fun (𝑊 cyclShift 1)))
177, 15, 16sylanbrc 583 . . . . . 6 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1))
18 eqidd 2737 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) = (𝑊 cyclShift 1))
19 wrdf 14541 . . . . . . . . 9 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
203, 19syl 17 . . . . . . . 8 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
2120fdmd 6721 . . . . . . 7 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
22 cshwrnid 32942 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → ran (𝑊 cyclShift 1) = ran 𝑊)
233, 4, 22syl2anc 584 . . . . . . . 8 (𝜑 → ran (𝑊 cyclShift 1) = ran 𝑊)
2423eqcomd 2742 . . . . . . 7 (𝜑 → ran 𝑊 = ran (𝑊 cyclShift 1))
2518, 21, 24f1oeq123d 6817 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊 ↔ (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1)))
2617, 25mpbird 257 . . . . 5 (𝜑 → (𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊)
27 f1f1orn 6834 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
28 f1ocnv 6835 . . . . . 6 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
298, 27, 283syl 18 . . . . 5 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1oco 6846 . . . . 5 (((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊) → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
3126, 29, 30syl2anc 584 . . . 4 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
32 disjdifr 4453 . . . . 5 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
3332a1i 11 . . . 4 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
34 f1oun 6842 . . . 4 (((( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊) ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
352, 31, 33, 33, 34syl22anc 838 . . 3 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
36 tocycval.1 . . . . 5 𝐶 = (toCyc‘𝐷)
37 tocycfv.d . . . . 5 (𝜑𝐷𝑉)
3836, 37, 3, 8tocycfv 33125 . . . 4 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
3920frnd 6719 . . . . . 6 (𝜑 → ran 𝑊𝐷)
40 undif 4462 . . . . . 6 (ran 𝑊𝐷 ↔ (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
4139, 40sylib 218 . . . . 5 (𝜑 → (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
42 uncom 4138 . . . . 5 (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)
4341, 42eqtr3di 2786 . . . 4 (𝜑𝐷 = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
4438, 43, 43f1oeq123d 6817 . . 3 (𝜑 → ((𝐶𝑊):𝐷1-1-onto𝐷 ↔ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)))
4535, 44mpbird 257 . 2 (𝜑 → (𝐶𝑊):𝐷1-1-onto𝐷)
46 fvex 6894 . . 3 (𝐶𝑊) ∈ V
47 cycpmcl.s . . . 4 𝑆 = (SymGrp‘𝐷)
48 eqid 2736 . . . 4 (Base‘𝑆) = (Base‘𝑆)
4947, 48elsymgbas2 19359 . . 3 ((𝐶𝑊) ∈ V → ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷))
5046, 49ax-mp 5 . 2 ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷)
5145, 50sylibr 234 1 (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313   I cid 5552  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  ccom 5663  Fun wfun 6530   Fn wfn 6531  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  cz 12593  ..^cfzo 13676  chash 14353  Word cword 14536   cyclShift ccsh 14811  Basecbs 17233  SymGrpcsymg 19355  toCycctocyc 33122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14354  df-word 14537  df-concat 14594  df-substr 14664  df-pfx 14694  df-csh 14812  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-tset 17295  df-efmnd 18852  df-symg 19356  df-tocyc 33123
This theorem is referenced by:  tocycf  33133  cycpm2cl  33136  cycpmco2  33149  cycpm3cl  33151  cycpmrn  33159  cyc3evpm  33166  cycpmgcl  33169
  Copyright terms: Public domain W3C validator