Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmcl Structured version   Visualization version   GIF version

Theorem cycpmcl 33071
Description: Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmcl.s 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
cycpmcl (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))

Proof of Theorem cycpmcl
StepHypRef Expression
1 f1oi 6806 . . . . 5 ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊)
21a1i 11 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊))
3 tocycfv.w . . . . . . . . 9 (𝜑𝑊 ∈ Word 𝐷)
4 1zzd 12524 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
5 cshwf 14724 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
63, 4, 5syl2anc 584 . . . . . . . 8 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
76ffnd 6657 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
8 tocycfv.1 . . . . . . . . . 10 (𝜑𝑊:dom 𝑊1-1𝐷)
9 df-f1 6491 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
108, 9sylib 218 . . . . . . . . 9 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1110simprd 495 . . . . . . . 8 (𝜑 → Fun 𝑊)
12 eqid 2729 . . . . . . . . 9 (𝑊 cyclShift 1) = (𝑊 cyclShift 1)
13 cshinj 14735 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → ((𝑊 cyclShift 1) = (𝑊 cyclShift 1) → Fun (𝑊 cyclShift 1)))
1412, 13mpi 20 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → Fun (𝑊 cyclShift 1))
153, 11, 4, 14syl3anc 1373 . . . . . . 7 (𝜑 → Fun (𝑊 cyclShift 1))
16 f1orn 6778 . . . . . . 7 ((𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1) ↔ ((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ Fun (𝑊 cyclShift 1)))
177, 15, 16sylanbrc 583 . . . . . 6 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1))
18 eqidd 2730 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) = (𝑊 cyclShift 1))
19 wrdf 14443 . . . . . . . . 9 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
203, 19syl 17 . . . . . . . 8 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
2120fdmd 6666 . . . . . . 7 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
22 cshwrnid 32916 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → ran (𝑊 cyclShift 1) = ran 𝑊)
233, 4, 22syl2anc 584 . . . . . . . 8 (𝜑 → ran (𝑊 cyclShift 1) = ran 𝑊)
2423eqcomd 2735 . . . . . . 7 (𝜑 → ran 𝑊 = ran (𝑊 cyclShift 1))
2518, 21, 24f1oeq123d 6762 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊 ↔ (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1)))
2617, 25mpbird 257 . . . . 5 (𝜑 → (𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊)
27 f1f1orn 6779 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
28 f1ocnv 6780 . . . . . 6 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
298, 27, 283syl 18 . . . . 5 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1oco 6791 . . . . 5 (((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊) → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
3126, 29, 30syl2anc 584 . . . 4 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
32 disjdifr 4426 . . . . 5 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
3332a1i 11 . . . 4 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
34 f1oun 6787 . . . 4 (((( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊) ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
352, 31, 33, 33, 34syl22anc 838 . . 3 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
36 tocycval.1 . . . . 5 𝐶 = (toCyc‘𝐷)
37 tocycfv.d . . . . 5 (𝜑𝐷𝑉)
3836, 37, 3, 8tocycfv 33064 . . . 4 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
3920frnd 6664 . . . . . 6 (𝜑 → ran 𝑊𝐷)
40 undif 4435 . . . . . 6 (ran 𝑊𝐷 ↔ (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
4139, 40sylib 218 . . . . 5 (𝜑 → (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
42 uncom 4111 . . . . 5 (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)
4341, 42eqtr3di 2779 . . . 4 (𝜑𝐷 = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
4438, 43, 43f1oeq123d 6762 . . 3 (𝜑 → ((𝐶𝑊):𝐷1-1-onto𝐷 ↔ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)))
4535, 44mpbird 257 . 2 (𝜑 → (𝐶𝑊):𝐷1-1-onto𝐷)
46 fvex 6839 . . 3 (𝐶𝑊) ∈ V
47 cycpmcl.s . . . 4 𝑆 = (SymGrp‘𝐷)
48 eqid 2729 . . . 4 (Base‘𝑆) = (Base‘𝑆)
4947, 48elsymgbas2 19270 . . 3 ((𝐶𝑊) ∈ V → ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷))
5046, 49ax-mp 5 . 2 ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷)
5145, 50sylibr 234 1 (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286   I cid 5517  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  ccom 5627  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  cz 12489  ..^cfzo 13575  chash 14255  Word cword 14438   cyclShift ccsh 14712  Basecbs 17138  SymGrpcsymg 19266  toCycctocyc 33061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-csh 14713  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-tset 17198  df-efmnd 18761  df-symg 19267  df-tocyc 33062
This theorem is referenced by:  tocycf  33072  cycpm2cl  33075  cycpmco2  33088  cycpm3cl  33090  cycpmrn  33098  cyc3evpm  33105  cycpmgcl  33108
  Copyright terms: Public domain W3C validator