Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmcl Structured version   Visualization version   GIF version

Theorem cycpmcl 33119
Description: Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmcl.s 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
cycpmcl (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))

Proof of Theorem cycpmcl
StepHypRef Expression
1 f1oi 6887 . . . . 5 ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊)
21a1i 11 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊))
3 tocycfv.w . . . . . . . . 9 (𝜑𝑊 ∈ Word 𝐷)
4 1zzd 12646 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
5 cshwf 14835 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
63, 4, 5syl2anc 584 . . . . . . . 8 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
76ffnd 6738 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
8 tocycfv.1 . . . . . . . . . 10 (𝜑𝑊:dom 𝑊1-1𝐷)
9 df-f1 6568 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
108, 9sylib 218 . . . . . . . . 9 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1110simprd 495 . . . . . . . 8 (𝜑 → Fun 𝑊)
12 eqid 2735 . . . . . . . . 9 (𝑊 cyclShift 1) = (𝑊 cyclShift 1)
13 cshinj 14846 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → ((𝑊 cyclShift 1) = (𝑊 cyclShift 1) → Fun (𝑊 cyclShift 1)))
1412, 13mpi 20 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → Fun (𝑊 cyclShift 1))
153, 11, 4, 14syl3anc 1370 . . . . . . 7 (𝜑 → Fun (𝑊 cyclShift 1))
16 f1orn 6859 . . . . . . 7 ((𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1) ↔ ((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ Fun (𝑊 cyclShift 1)))
177, 15, 16sylanbrc 583 . . . . . 6 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1))
18 eqidd 2736 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) = (𝑊 cyclShift 1))
19 wrdf 14554 . . . . . . . . 9 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
203, 19syl 17 . . . . . . . 8 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
2120fdmd 6747 . . . . . . 7 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
22 cshwrnid 32931 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → ran (𝑊 cyclShift 1) = ran 𝑊)
233, 4, 22syl2anc 584 . . . . . . . 8 (𝜑 → ran (𝑊 cyclShift 1) = ran 𝑊)
2423eqcomd 2741 . . . . . . 7 (𝜑 → ran 𝑊 = ran (𝑊 cyclShift 1))
2518, 21, 24f1oeq123d 6843 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊 ↔ (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1)))
2617, 25mpbird 257 . . . . 5 (𝜑 → (𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊)
27 f1f1orn 6860 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
28 f1ocnv 6861 . . . . . 6 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
298, 27, 283syl 18 . . . . 5 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1oco 6872 . . . . 5 (((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊) → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
3126, 29, 30syl2anc 584 . . . 4 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
32 disjdifr 4479 . . . . 5 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
3332a1i 11 . . . 4 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
34 f1oun 6868 . . . 4 (((( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊) ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
352, 31, 33, 33, 34syl22anc 839 . . 3 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
36 tocycval.1 . . . . 5 𝐶 = (toCyc‘𝐷)
37 tocycfv.d . . . . 5 (𝜑𝐷𝑉)
3836, 37, 3, 8tocycfv 33112 . . . 4 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
3920frnd 6745 . . . . . 6 (𝜑 → ran 𝑊𝐷)
40 undif 4488 . . . . . 6 (ran 𝑊𝐷 ↔ (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
4139, 40sylib 218 . . . . 5 (𝜑 → (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
42 uncom 4168 . . . . 5 (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)
4341, 42eqtr3di 2790 . . . 4 (𝜑𝐷 = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
4438, 43, 43f1oeq123d 6843 . . 3 (𝜑 → ((𝐶𝑊):𝐷1-1-onto𝐷 ↔ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)))
4535, 44mpbird 257 . 2 (𝜑 → (𝐶𝑊):𝐷1-1-onto𝐷)
46 fvex 6920 . . 3 (𝐶𝑊) ∈ V
47 cycpmcl.s . . . 4 𝑆 = (SymGrp‘𝐷)
48 eqid 2735 . . . 4 (Base‘𝑆) = (Base‘𝑆)
4947, 48elsymgbas2 19405 . . 3 ((𝐶𝑊) ∈ V → ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷))
5046, 49ax-mp 5 . 2 ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷)
5145, 50sylibr 234 1 (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339   I cid 5582  ccnv 5688  dom cdm 5689  ran crn 5690  cres 5691  ccom 5693  Fun wfun 6557   Fn wfn 6558  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  cz 12611  ..^cfzo 13691  chash 14366  Word cword 14549   cyclShift ccsh 14823  Basecbs 17245  SymGrpcsymg 19401  toCycctocyc 33109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-hash 14367  df-word 14550  df-concat 14606  df-substr 14676  df-pfx 14706  df-csh 14824  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-tset 17317  df-efmnd 18895  df-symg 19402  df-tocyc 33110
This theorem is referenced by:  tocycf  33120  cycpm2cl  33123  cycpmco2  33136  cycpm3cl  33138  cycpmrn  33146  cyc3evpm  33153  cycpmgcl  33156
  Copyright terms: Public domain W3C validator