Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmcl Structured version   Visualization version   GIF version

Theorem cycpmcl 31668
Description: Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmcl.s 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
cycpmcl (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))

Proof of Theorem cycpmcl
StepHypRef Expression
1 f1oi 6809 . . . . 5 ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊)
21a1i 11 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊))
3 tocycfv.w . . . . . . . . 9 (𝜑𝑊 ∈ Word 𝐷)
4 1zzd 12456 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
5 cshwf 14611 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
63, 4, 5syl2anc 585 . . . . . . . 8 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
76ffnd 6656 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
8 tocycfv.1 . . . . . . . . . 10 (𝜑𝑊:dom 𝑊1-1𝐷)
9 df-f1 6488 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
108, 9sylib 217 . . . . . . . . 9 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1110simprd 497 . . . . . . . 8 (𝜑 → Fun 𝑊)
12 eqid 2737 . . . . . . . . 9 (𝑊 cyclShift 1) = (𝑊 cyclShift 1)
13 cshinj 14622 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → ((𝑊 cyclShift 1) = (𝑊 cyclShift 1) → Fun (𝑊 cyclShift 1)))
1412, 13mpi 20 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → Fun (𝑊 cyclShift 1))
153, 11, 4, 14syl3anc 1371 . . . . . . 7 (𝜑 → Fun (𝑊 cyclShift 1))
16 f1orn 6781 . . . . . . 7 ((𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1) ↔ ((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ Fun (𝑊 cyclShift 1)))
177, 15, 16sylanbrc 584 . . . . . 6 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1))
18 eqidd 2738 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) = (𝑊 cyclShift 1))
19 wrdf 14326 . . . . . . . . 9 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
203, 19syl 17 . . . . . . . 8 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
2120fdmd 6666 . . . . . . 7 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
22 cshwrnid 31518 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → ran (𝑊 cyclShift 1) = ran 𝑊)
233, 4, 22syl2anc 585 . . . . . . . 8 (𝜑 → ran (𝑊 cyclShift 1) = ran 𝑊)
2423eqcomd 2743 . . . . . . 7 (𝜑 → ran 𝑊 = ran (𝑊 cyclShift 1))
2518, 21, 24f1oeq123d 6765 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊 ↔ (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1)))
2617, 25mpbird 257 . . . . 5 (𝜑 → (𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊)
27 f1f1orn 6782 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
28 f1ocnv 6783 . . . . . 6 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
298, 27, 283syl 18 . . . . 5 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1oco 6794 . . . . 5 (((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊) → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
3126, 29, 30syl2anc 585 . . . 4 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
32 disjdifr 4423 . . . . 5 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
3332a1i 11 . . . 4 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
34 f1oun 6790 . . . 4 (((( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊) ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
352, 31, 33, 33, 34syl22anc 837 . . 3 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
36 tocycval.1 . . . . 5 𝐶 = (toCyc‘𝐷)
37 tocycfv.d . . . . 5 (𝜑𝐷𝑉)
3836, 37, 3, 8tocycfv 31661 . . . 4 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
3920frnd 6663 . . . . . 6 (𝜑 → ran 𝑊𝐷)
40 undif 4432 . . . . . 6 (ran 𝑊𝐷 ↔ (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
4139, 40sylib 217 . . . . 5 (𝜑 → (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
42 uncom 4104 . . . . 5 (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)
4341, 42eqtr3di 2792 . . . 4 (𝜑𝐷 = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
4438, 43, 43f1oeq123d 6765 . . 3 (𝜑 → ((𝐶𝑊):𝐷1-1-onto𝐷 ↔ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)))
4535, 44mpbird 257 . 2 (𝜑 → (𝐶𝑊):𝐷1-1-onto𝐷)
46 fvex 6842 . . 3 (𝐶𝑊) ∈ V
47 cycpmcl.s . . . 4 𝑆 = (SymGrp‘𝐷)
48 eqid 2737 . . . 4 (Base‘𝑆) = (Base‘𝑆)
4947, 48elsymgbas2 19076 . . 3 ((𝐶𝑊) ∈ V → ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷))
5046, 49ax-mp 5 . 2 ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷)
5145, 50sylibr 233 1 (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3442  cdif 3898  cun 3899  cin 3900  wss 3901  c0 4273   I cid 5521  ccnv 5623  dom cdm 5624  ran crn 5625  cres 5626  ccom 5628  Fun wfun 6477   Fn wfn 6478  wf 6479  1-1wf1 6480  1-1-ontowf1o 6482  cfv 6483  (class class class)co 7341  0cc0 10976  1c1 10977  cz 12424  ..^cfzo 13487  chash 14149  Word cword 14321   cyclShift ccsh 14599  Basecbs 17009  SymGrpcsymg 19070  toCycctocyc 31658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-map 8692  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-sup 9303  df-inf 9304  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-z 12425  df-uz 12688  df-rp 12836  df-fz 13345  df-fzo 13488  df-fl 13617  df-mod 13695  df-hash 14150  df-word 14322  df-concat 14378  df-substr 14452  df-pfx 14482  df-csh 14600  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-tset 17078  df-efmnd 18604  df-symg 19071  df-tocyc 31659
This theorem is referenced by:  tocycf  31669  cycpm2cl  31672  cycpmco2  31685  cycpm3cl  31687  cycpmrn  31695  cyc3evpm  31702  cycpmgcl  31705
  Copyright terms: Public domain W3C validator