Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmcl Structured version   Visualization version   GIF version

Theorem cycpmcl 30758
Description: Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmcl.s 𝑆 = (SymGrp‘𝐷)
Assertion
Ref Expression
cycpmcl (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))

Proof of Theorem cycpmcl
StepHypRef Expression
1 f1oi 6652 . . . . 5 ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊)
21a1i 11 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊))
3 tocycfv.w . . . . . . . . 9 (𝜑𝑊 ∈ Word 𝐷)
4 1zzd 12014 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
5 cshwf 14162 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
63, 4, 5syl2anc 586 . . . . . . . 8 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
76ffnd 6515 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
8 tocycfv.1 . . . . . . . . . 10 (𝜑𝑊:dom 𝑊1-1𝐷)
9 df-f1 6360 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
108, 9sylib 220 . . . . . . . . 9 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1110simprd 498 . . . . . . . 8 (𝜑 → Fun 𝑊)
12 eqid 2821 . . . . . . . . 9 (𝑊 cyclShift 1) = (𝑊 cyclShift 1)
13 cshinj 14173 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → ((𝑊 cyclShift 1) = (𝑊 cyclShift 1) → Fun (𝑊 cyclShift 1)))
1412, 13mpi 20 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ Fun 𝑊 ∧ 1 ∈ ℤ) → Fun (𝑊 cyclShift 1))
153, 11, 4, 14syl3anc 1367 . . . . . . 7 (𝜑 → Fun (𝑊 cyclShift 1))
16 f1orn 6625 . . . . . . 7 ((𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1) ↔ ((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ Fun (𝑊 cyclShift 1)))
177, 15, 16sylanbrc 585 . . . . . 6 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1))
18 eqidd 2822 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) = (𝑊 cyclShift 1))
19 wrdf 13867 . . . . . . . . 9 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
203, 19syl 17 . . . . . . . 8 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
2120fdmd 6523 . . . . . . 7 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
22 cshwrnid 30635 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → ran (𝑊 cyclShift 1) = ran 𝑊)
233, 4, 22syl2anc 586 . . . . . . . 8 (𝜑 → ran (𝑊 cyclShift 1) = ran 𝑊)
2423eqcomd 2827 . . . . . . 7 (𝜑 → ran 𝑊 = ran (𝑊 cyclShift 1))
2518, 21, 24f1oeq123d 6610 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊 ↔ (𝑊 cyclShift 1):(0..^(♯‘𝑊))–1-1-onto→ran (𝑊 cyclShift 1)))
2617, 25mpbird 259 . . . . 5 (𝜑 → (𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊)
27 f1f1orn 6626 . . . . . 6 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
28 f1ocnv 6627 . . . . . 6 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
298, 27, 283syl 18 . . . . 5 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1oco 6637 . . . . 5 (((𝑊 cyclShift 1):dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊) → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
3126, 29, 30syl2anc 586 . . . 4 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊)
32 incom 4178 . . . . . 6 (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊)
33 disjdif 4421 . . . . . 6 (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ∅
3432, 33eqtr3i 2846 . . . . 5 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
3534a1i 11 . . . 4 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
36 f1oun 6634 . . . 4 (((( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊):ran 𝑊1-1-onto→ran 𝑊) ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
372, 31, 35, 35, 36syl22anc 836 . . 3 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
38 tocycval.1 . . . . 5 𝐶 = (toCyc‘𝐷)
39 tocycfv.d . . . . 5 (𝜑𝐷𝑉)
4038, 39, 3, 8tocycfv 30751 . . . 4 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
41 uncom 4129 . . . . 5 (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)
4220frnd 6521 . . . . . 6 (𝜑 → ran 𝑊𝐷)
43 undif 4430 . . . . . 6 (ran 𝑊𝐷 ↔ (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
4442, 43sylib 220 . . . . 5 (𝜑 → (ran 𝑊 ∪ (𝐷 ∖ ran 𝑊)) = 𝐷)
4541, 44syl5reqr 2871 . . . 4 (𝜑𝐷 = ((𝐷 ∖ ran 𝑊) ∪ ran 𝑊))
4640, 45, 45f1oeq123d 6610 . . 3 (𝜑 → ((𝐶𝑊):𝐷1-1-onto𝐷 ↔ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)):((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)–1-1-onto→((𝐷 ∖ ran 𝑊) ∪ ran 𝑊)))
4737, 46mpbird 259 . 2 (𝜑 → (𝐶𝑊):𝐷1-1-onto𝐷)
48 fvex 6683 . . 3 (𝐶𝑊) ∈ V
49 cycpmcl.s . . . 4 𝑆 = (SymGrp‘𝐷)
50 eqid 2821 . . . 4 (Base‘𝑆) = (Base‘𝑆)
5149, 50elsymgbas2 18501 . . 3 ((𝐶𝑊) ∈ V → ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷))
5248, 51ax-mp 5 . 2 ((𝐶𝑊) ∈ (Base‘𝑆) ↔ (𝐶𝑊):𝐷1-1-onto𝐷)
5347, 52sylibr 236 1 (𝜑 → (𝐶𝑊) ∈ (Base‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291   I cid 5459  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  cz 11982  ..^cfzo 13034  chash 13691  Word cword 13862   cyclShift ccsh 14150  Basecbs 16483  SymGrpcsymg 18495  toCycctocyc 30748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-hash 13692  df-word 13863  df-concat 13923  df-substr 14003  df-pfx 14033  df-csh 14151  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-efmnd 18034  df-symg 18496  df-tocyc 30749
This theorem is referenced by:  tocycf  30759  cycpm2cl  30762  cycpmco2  30775  cycpm3cl  30777  cycpmrn  30785  cyc3evpm  30792  cycpmgcl  30795
  Copyright terms: Public domain W3C validator