Step | Hyp | Ref
| Expression |
1 | | brdomi 8704 |
. . . 4
⊢ (ω
≼ 𝐴 →
∃𝑓 𝑓:ω–1-1→𝐴) |
2 | 1 | adantr 480 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃𝑓 𝑓:ω–1-1→𝐴) |
3 | | reldom 8697 |
. . . . . . 7
⊢ Rel
≼ |
4 | 3 | brrelex2i 5635 |
. . . . . 6
⊢ (ω
≼ 𝐴 → 𝐴 ∈ V) |
5 | 4 | ad2antrr 722 |
. . . . 5
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → 𝐴 ∈ V) |
6 | | simplr 765 |
. . . . 5
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → 𝐵 ∈ 𝐴) |
7 | | f1f 6654 |
. . . . . . 7
⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω⟶𝐴) |
8 | 7 | adantl 481 |
. . . . . 6
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω⟶𝐴) |
9 | | peano1 7710 |
. . . . . 6
⊢ ∅
∈ ω |
10 | | ffvelrn 6941 |
. . . . . 6
⊢ ((𝑓:ω⟶𝐴 ∧ ∅ ∈ ω)
→ (𝑓‘∅)
∈ 𝐴) |
11 | 8, 9, 10 | sylancl 585 |
. . . . 5
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝑓‘∅) ∈ 𝐴) |
12 | | difsnen 8794 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐴 ∧ (𝑓‘∅) ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)})) |
13 | 5, 6, 11, 12 | syl3anc 1369 |
. . . 4
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)})) |
14 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
15 | | f1f1orn 6711 |
. . . . . . . . . . 11
⊢ (𝑓:ω–1-1→𝐴 → 𝑓:ω–1-1-onto→ran
𝑓) |
16 | 15 | adantl 481 |
. . . . . . . . . 10
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω–1-1-onto→ran
𝑓) |
17 | | f1oen3g 8709 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ V ∧ 𝑓:ω–1-1-onto→ran
𝑓) → ω ≈
ran 𝑓) |
18 | 14, 16, 17 | sylancr 586 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ω ≈ ran 𝑓) |
19 | 18 | ensymd 8746 |
. . . . . . . 8
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ran 𝑓 ≈ ω) |
20 | 3 | brrelex1i 5634 |
. . . . . . . . . . 11
⊢ (ω
≼ 𝐴 → ω
∈ V) |
21 | 20 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ω ∈ V) |
22 | | limom 7703 |
. . . . . . . . . . 11
⊢ Lim
ω |
23 | 22 | limenpsi 8888 |
. . . . . . . . . 10
⊢ (ω
∈ V → ω ≈ (ω ∖ {∅})) |
24 | 21, 23 | syl 17 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ω ≈ (ω ∖
{∅})) |
25 | 14 | resex 5928 |
. . . . . . . . . . 11
⊢ (𝑓 ↾ (ω ∖
{∅})) ∈ V |
26 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → 𝑓:ω–1-1→𝐴) |
27 | | difss 4062 |
. . . . . . . . . . . 12
⊢ (ω
∖ {∅}) ⊆ ω |
28 | | f1ores 6714 |
. . . . . . . . . . . 12
⊢ ((𝑓:ω–1-1→𝐴 ∧ (ω ∖ {∅}) ⊆
ω) → (𝑓 ↾
(ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖
{∅}))) |
29 | 26, 27, 28 | sylancl 585 |
. . . . . . . . . . 11
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 ↾ (ω ∖
{∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖
{∅}))) |
30 | | f1oen3g 8709 |
. . . . . . . . . . 11
⊢ (((𝑓 ↾ (ω ∖
{∅})) ∈ V ∧ (𝑓 ↾ (ω ∖
{∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅}))) →
(ω ∖ {∅}) ≈ (𝑓 “ (ω ∖
{∅}))) |
31 | 25, 29, 30 | sylancr 586 |
. . . . . . . . . 10
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (ω ∖ {∅}) ≈
(𝑓 “ (ω ∖
{∅}))) |
32 | | f1orn 6710 |
. . . . . . . . . . . . 13
⊢ (𝑓:ω–1-1-onto→ran
𝑓 ↔ (𝑓 Fn ω ∧ Fun ◡𝑓)) |
33 | 32 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑓:ω–1-1-onto→ran
𝑓 → Fun ◡𝑓) |
34 | | imadif 6502 |
. . . . . . . . . . . 12
⊢ (Fun
◡𝑓 → (𝑓 “ (ω ∖ {∅})) =
((𝑓 “ ω)
∖ (𝑓 “
{∅}))) |
35 | 16, 33, 34 | 3syl 18 |
. . . . . . . . . . 11
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ (ω ∖ {∅})) =
((𝑓 “ ω)
∖ (𝑓 “
{∅}))) |
36 | | f1fn 6655 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ω–1-1→𝐴 → 𝑓 Fn ω) |
37 | 36 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → 𝑓 Fn ω) |
38 | | fnima 6547 |
. . . . . . . . . . . . 13
⊢ (𝑓 Fn ω → (𝑓 “ ω) = ran 𝑓) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . 12
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ ω) = ran 𝑓) |
40 | | fnsnfv 6829 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 Fn ω ∧ ∅ ∈
ω) → {(𝑓‘∅)} = (𝑓 “ {∅})) |
41 | 37, 9, 40 | sylancl 585 |
. . . . . . . . . . . . 13
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → {(𝑓‘∅)} = (𝑓 “ {∅})) |
42 | 41 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ {∅}) = {(𝑓‘∅)}) |
43 | 39, 42 | difeq12d 4054 |
. . . . . . . . . . 11
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ((𝑓 “ ω) ∖ (𝑓 “ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)})) |
44 | 35, 43 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝑓 “ (ω ∖ {∅})) = (ran
𝑓 ∖ {(𝑓‘∅)})) |
45 | 31, 44 | breqtrd 5096 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (ω ∖ {∅}) ≈
(ran 𝑓 ∖ {(𝑓‘∅)})) |
46 | | entr 8747 |
. . . . . . . . 9
⊢ ((ω
≈ (ω ∖ {∅}) ∧ (ω ∖ {∅}) ≈
(ran 𝑓 ∖ {(𝑓‘∅)})) →
ω ≈ (ran 𝑓
∖ {(𝑓‘∅)})) |
47 | 24, 45, 46 | syl2anc 583 |
. . . . . . . 8
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) |
48 | | entr 8747 |
. . . . . . . 8
⊢ ((ran
𝑓 ≈ ω ∧
ω ≈ (ran 𝑓
∖ {(𝑓‘∅)})) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) |
49 | 19, 47, 48 | syl2anc 583 |
. . . . . . 7
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) |
50 | | difexg 5246 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝐴 ∖ ran 𝑓) ∈ V) |
51 | | enrefg 8727 |
. . . . . . . 8
⊢ ((𝐴 ∖ ran 𝑓) ∈ V → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓)) |
52 | 5, 50, 51 | 3syl 18 |
. . . . . . 7
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓)) |
53 | | disjdif 4402 |
. . . . . . . 8
⊢ (ran
𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅ |
54 | 53 | a1i 11 |
. . . . . . 7
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅) |
55 | | difss 4062 |
. . . . . . . . . 10
⊢ (ran
𝑓 ∖ {(𝑓‘∅)}) ⊆ ran
𝑓 |
56 | | ssrin 4164 |
. . . . . . . . . 10
⊢ ((ran
𝑓 ∖ {(𝑓‘∅)}) ⊆ ran
𝑓 → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓))) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . 9
⊢ ((ran
𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) |
58 | | sseq0 4330 |
. . . . . . . . 9
⊢ ((((ran
𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅) |
59 | 57, 53, 58 | mp2an 688 |
. . . . . . . 8
⊢ ((ran
𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅ |
60 | 59 | a1i 11 |
. . . . . . 7
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅) |
61 | | unen 8790 |
. . . . . . 7
⊢ (((ran
𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓)) ∧ ((ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅ ∧ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓))) |
62 | 49, 52, 54, 60, 61 | syl22anc 835 |
. . . . . 6
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓))) |
63 | 8 | frnd 6592 |
. . . . . . 7
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ran 𝑓 ⊆ 𝐴) |
64 | | undif 4412 |
. . . . . . 7
⊢ (ran
𝑓 ⊆ 𝐴 ↔ (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴) |
65 | 63, 64 | sylib 217 |
. . . . . 6
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴) |
66 | | uncom 4083 |
. . . . . . 7
⊢ ((ran
𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) |
67 | | eldifn 4058 |
. . . . . . . . . . 11
⊢ ((𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓) → ¬ (𝑓‘∅) ∈ ran 𝑓) |
68 | | fnfvelrn 6940 |
. . . . . . . . . . . 12
⊢ ((𝑓 Fn ω ∧ ∅ ∈
ω) → (𝑓‘∅) ∈ ran 𝑓) |
69 | 37, 9, 68 | sylancl 585 |
. . . . . . . . . . 11
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝑓‘∅) ∈ ran 𝑓) |
70 | 67, 69 | nsyl3 138 |
. . . . . . . . . 10
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓)) |
71 | | disjsn 4644 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ ↔ ¬
(𝑓‘∅) ∈
(𝐴 ∖ ran 𝑓)) |
72 | 70, 71 | sylibr 233 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅) |
73 | | undif4 4397 |
. . . . . . . . 9
⊢ (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)})) |
74 | 72, 73 | syl 17 |
. . . . . . . 8
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)})) |
75 | | uncom 4083 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) |
76 | 75, 65 | eqtrid 2790 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = 𝐴) |
77 | 76 | difeq1d 4052 |
. . . . . . . 8
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}) = (𝐴 ∖ {(𝑓‘∅)})) |
78 | 74, 77 | eqtrd 2778 |
. . . . . . 7
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (𝐴 ∖ {(𝑓‘∅)})) |
79 | 66, 78 | eqtrid 2790 |
. . . . . 6
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = (𝐴 ∖ {(𝑓‘∅)})) |
80 | 62, 65, 79 | 3brtr3d 5101 |
. . . . 5
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → 𝐴 ≈ (𝐴 ∖ {(𝑓‘∅)})) |
81 | 80 | ensymd 8746 |
. . . 4
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴) |
82 | | entr 8747 |
. . . 4
⊢ (((𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴) |
83 | 13, 81, 82 | syl2anc 583 |
. . 3
⊢
(((ω ≼ 𝐴
∧ 𝐵 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴) |
84 | 2, 83 | exlimddv 1939 |
. 2
⊢ ((ω
≼ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴) |
85 | | difsn 4728 |
. . . 4
⊢ (¬
𝐵 ∈ 𝐴 → (𝐴 ∖ {𝐵}) = 𝐴) |
86 | 85 | adantl 481 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) = 𝐴) |
87 | | enrefg 8727 |
. . . . 5
⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) |
88 | 4, 87 | syl 17 |
. . . 4
⊢ (ω
≼ 𝐴 → 𝐴 ≈ 𝐴) |
89 | 88 | adantr 480 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴) → 𝐴 ≈ 𝐴) |
90 | 86, 89 | eqbrtrd 5092 |
. 2
⊢ ((ω
≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴) |
91 | 84, 90 | pm2.61dan 809 |
1
⊢ (ω
≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴) |