MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdifsn Structured version   Visualization version   GIF version

Theorem infdifsn 9726
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infdifsn (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem infdifsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 9018 . . . 4 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
21adantr 480 . . 3 ((ω ≼ 𝐴𝐵𝐴) → ∃𝑓 𝑓:ω–1-1𝐴)
3 reldom 9009 . . . . . . 7 Rel ≼
43brrelex2i 5757 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
54ad2antrr 725 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ∈ V)
6 simplr 768 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐵𝐴)
7 f1f 6817 . . . . . . 7 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
87adantl 481 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
9 peano1 7927 . . . . . 6 ∅ ∈ ω
10 ffvelcdm 7115 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ 𝐴)
118, 9, 10sylancl 585 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
12 difsnen 9119 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐴 ∧ (𝑓‘∅) ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
135, 6, 11, 12syl3anc 1371 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
14 vex 3492 . . . . . . . . . 10 𝑓 ∈ V
15 f1f1orn 6873 . . . . . . . . . . 11 (𝑓:ω–1-1𝐴𝑓:ω–1-1-onto→ran 𝑓)
1615adantl 481 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1-onto→ran 𝑓)
17 f1oen3g 9026 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ω–1-1-onto→ran 𝑓) → ω ≈ ran 𝑓)
1814, 16, 17sylancr 586 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ ran 𝑓)
1918ensymd 9065 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ ω)
203brrelex1i 5756 . . . . . . . . . . 11 (ω ≼ 𝐴 → ω ∈ V)
2120ad2antrr 725 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ∈ V)
22 limom 7919 . . . . . . . . . . 11 Lim ω
2322limenpsi 9218 . . . . . . . . . 10 (ω ∈ V → ω ≈ (ω ∖ {∅}))
2421, 23syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ω ∖ {∅}))
2514resex 6058 . . . . . . . . . . 11 (𝑓 ↾ (ω ∖ {∅})) ∈ V
26 simpr 484 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1𝐴)
27 difss 4159 . . . . . . . . . . . 12 (ω ∖ {∅}) ⊆ ω
28 f1ores 6876 . . . . . . . . . . . 12 ((𝑓:ω–1-1𝐴 ∧ (ω ∖ {∅}) ⊆ ω) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
2926, 27, 28sylancl 585 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
30 f1oen3g 9026 . . . . . . . . . . 11 (((𝑓 ↾ (ω ∖ {∅})) ∈ V ∧ (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅}))) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
3125, 29, 30sylancr 586 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
32 f1orn 6872 . . . . . . . . . . . . 13 (𝑓:ω–1-1-onto→ran 𝑓 ↔ (𝑓 Fn ω ∧ Fun 𝑓))
3332simprbi 496 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto→ran 𝑓 → Fun 𝑓)
34 imadif 6662 . . . . . . . . . . . 12 (Fun 𝑓 → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
3516, 33, 343syl 18 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
36 f1fn 6818 . . . . . . . . . . . . . 14 (𝑓:ω–1-1𝐴𝑓 Fn ω)
3736adantl 481 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓 Fn ω)
38 fnima 6710 . . . . . . . . . . . . 13 (𝑓 Fn ω → (𝑓 “ ω) = ran 𝑓)
3937, 38syl 17 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ ω) = ran 𝑓)
40 fnsnfv 7001 . . . . . . . . . . . . . 14 ((𝑓 Fn ω ∧ ∅ ∈ ω) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4137, 9, 40sylancl 585 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4241eqcomd 2746 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ {∅}) = {(𝑓‘∅)})
4339, 42difeq12d 4150 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝑓 “ ω) ∖ (𝑓 “ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4435, 43eqtrd 2780 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4531, 44breqtrd 5192 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
46 entr 9066 . . . . . . . . 9 ((ω ≈ (ω ∖ {∅}) ∧ (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4724, 45, 46syl2anc 583 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
48 entr 9066 . . . . . . . 8 ((ran 𝑓 ≈ ω ∧ ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4919, 47, 48syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
50 difexg 5347 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∖ ran 𝑓) ∈ V)
51 enrefg 9044 . . . . . . . 8 ((𝐴 ∖ ran 𝑓) ∈ V → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
525, 50, 513syl 18 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
53 disjdif 4495 . . . . . . . 8 (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅
5453a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅)
55 difss 4159 . . . . . . . . . 10 (ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓
56 ssrin 4263 . . . . . . . . . 10 ((ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓 → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)))
5755, 56ax-mp 5 . . . . . . . . 9 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓))
58 sseq0 4426 . . . . . . . . 9 ((((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
5957, 53, 58mp2an 691 . . . . . . . 8 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅
6059a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
61 unen 9112 . . . . . . 7 (((ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓)) ∧ ((ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅ ∧ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
6249, 52, 54, 60, 61syl22anc 838 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
638frnd 6755 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓𝐴)
64 undif 4505 . . . . . . 7 (ran 𝑓𝐴 ↔ (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
6563, 64sylib 218 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
66 uncom 4181 . . . . . . 7 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)}))
67 eldifn 4155 . . . . . . . . . . 11 ((𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓) → ¬ (𝑓‘∅) ∈ ran 𝑓)
68 fnfvelrn 7114 . . . . . . . . . . . 12 ((𝑓 Fn ω ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ ran 𝑓)
6937, 9, 68sylancl 585 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ ran 𝑓)
7067, 69nsyl3 138 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
71 disjsn 4736 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ ↔ ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
7270, 71sylibr 234 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅)
73 undif4 4490 . . . . . . . . 9 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
7472, 73syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
75 uncom 4181 . . . . . . . . . 10 ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓))
7675, 65eqtrid 2792 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = 𝐴)
7776difeq1d 4148 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}) = (𝐴 ∖ {(𝑓‘∅)}))
7874, 77eqtrd 2780 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (𝐴 ∖ {(𝑓‘∅)}))
7966, 78eqtrid 2792 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = (𝐴 ∖ {(𝑓‘∅)}))
8062, 65, 793brtr3d 5197 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ≈ (𝐴 ∖ {(𝑓‘∅)}))
8180ensymd 9065 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴)
82 entr 9066 . . . 4 (((𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
8313, 81, 82syl2anc 583 . . 3 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
842, 83exlimddv 1934 . 2 ((ω ≼ 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
85 difsn 4823 . . . 4 𝐵𝐴 → (𝐴 ∖ {𝐵}) = 𝐴)
8685adantl 481 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) = 𝐴)
87 enrefg 9044 . . . . 5 (𝐴 ∈ V → 𝐴𝐴)
884, 87syl 17 . . . 4 (ω ≼ 𝐴𝐴𝐴)
8988adantr 480 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → 𝐴𝐴)
9086, 89eqbrtrd 5188 . 2 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
9184, 90pm2.61dan 812 1 (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  ccnv 5699  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  ωcom 7903  cen 9000  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-er 8763  df-en 9004  df-dom 9005
This theorem is referenced by:  infdiffi  9727  infdju1  10259  infpss  10285
  Copyright terms: Public domain W3C validator