MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdifsn Structured version   Visualization version   GIF version

Theorem infdifsn 9104
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infdifsn (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem infdifsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8503 . . . 4 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
21adantr 484 . . 3 ((ω ≼ 𝐴𝐵𝐴) → ∃𝑓 𝑓:ω–1-1𝐴)
3 reldom 8498 . . . . . . 7 Rel ≼
43brrelex2i 5573 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
54ad2antrr 725 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ∈ V)
6 simplr 768 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐵𝐴)
7 f1f 6549 . . . . . . 7 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
87adantl 485 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
9 peano1 7581 . . . . . 6 ∅ ∈ ω
10 ffvelrn 6826 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ 𝐴)
118, 9, 10sylancl 589 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
12 difsnen 8582 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐴 ∧ (𝑓‘∅) ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
135, 6, 11, 12syl3anc 1368 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
14 vex 3444 . . . . . . . . . 10 𝑓 ∈ V
15 f1f1orn 6601 . . . . . . . . . . 11 (𝑓:ω–1-1𝐴𝑓:ω–1-1-onto→ran 𝑓)
1615adantl 485 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1-onto→ran 𝑓)
17 f1oen3g 8508 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ω–1-1-onto→ran 𝑓) → ω ≈ ran 𝑓)
1814, 16, 17sylancr 590 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ ran 𝑓)
1918ensymd 8543 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ ω)
203brrelex1i 5572 . . . . . . . . . . 11 (ω ≼ 𝐴 → ω ∈ V)
2120ad2antrr 725 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ∈ V)
22 limom 7575 . . . . . . . . . . 11 Lim ω
2322limenpsi 8676 . . . . . . . . . 10 (ω ∈ V → ω ≈ (ω ∖ {∅}))
2421, 23syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ω ∖ {∅}))
2514resex 5866 . . . . . . . . . . 11 (𝑓 ↾ (ω ∖ {∅})) ∈ V
26 simpr 488 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1𝐴)
27 difss 4059 . . . . . . . . . . . 12 (ω ∖ {∅}) ⊆ ω
28 f1ores 6604 . . . . . . . . . . . 12 ((𝑓:ω–1-1𝐴 ∧ (ω ∖ {∅}) ⊆ ω) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
2926, 27, 28sylancl 589 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
30 f1oen3g 8508 . . . . . . . . . . 11 (((𝑓 ↾ (ω ∖ {∅})) ∈ V ∧ (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅}))) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
3125, 29, 30sylancr 590 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
32 f1orn 6600 . . . . . . . . . . . . 13 (𝑓:ω–1-1-onto→ran 𝑓 ↔ (𝑓 Fn ω ∧ Fun 𝑓))
3332simprbi 500 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto→ran 𝑓 → Fun 𝑓)
34 imadif 6408 . . . . . . . . . . . 12 (Fun 𝑓 → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
3516, 33, 343syl 18 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
36 f1fn 6550 . . . . . . . . . . . . . 14 (𝑓:ω–1-1𝐴𝑓 Fn ω)
3736adantl 485 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓 Fn ω)
38 fnima 6450 . . . . . . . . . . . . 13 (𝑓 Fn ω → (𝑓 “ ω) = ran 𝑓)
3937, 38syl 17 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ ω) = ran 𝑓)
40 fnsnfv 6718 . . . . . . . . . . . . . 14 ((𝑓 Fn ω ∧ ∅ ∈ ω) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4137, 9, 40sylancl 589 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4241eqcomd 2804 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ {∅}) = {(𝑓‘∅)})
4339, 42difeq12d 4051 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝑓 “ ω) ∖ (𝑓 “ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4435, 43eqtrd 2833 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4531, 44breqtrd 5056 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
46 entr 8544 . . . . . . . . 9 ((ω ≈ (ω ∖ {∅}) ∧ (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4724, 45, 46syl2anc 587 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
48 entr 8544 . . . . . . . 8 ((ran 𝑓 ≈ ω ∧ ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4919, 47, 48syl2anc 587 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
50 difexg 5195 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∖ ran 𝑓) ∈ V)
51 enrefg 8524 . . . . . . . 8 ((𝐴 ∖ ran 𝑓) ∈ V → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
525, 50, 513syl 18 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
53 disjdif 4379 . . . . . . . 8 (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅
5453a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅)
55 difss 4059 . . . . . . . . . 10 (ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓
56 ssrin 4160 . . . . . . . . . 10 ((ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓 → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)))
5755, 56ax-mp 5 . . . . . . . . 9 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓))
58 sseq0 4307 . . . . . . . . 9 ((((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
5957, 53, 58mp2an 691 . . . . . . . 8 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅
6059a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
61 unen 8579 . . . . . . 7 (((ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓)) ∧ ((ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅ ∧ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
6249, 52, 54, 60, 61syl22anc 837 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
638frnd 6494 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓𝐴)
64 undif 4388 . . . . . . 7 (ran 𝑓𝐴 ↔ (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
6563, 64sylib 221 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
66 uncom 4080 . . . . . . 7 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)}))
67 eldifn 4055 . . . . . . . . . . 11 ((𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓) → ¬ (𝑓‘∅) ∈ ran 𝑓)
68 fnfvelrn 6825 . . . . . . . . . . . 12 ((𝑓 Fn ω ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ ran 𝑓)
6937, 9, 68sylancl 589 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ ran 𝑓)
7067, 69nsyl3 140 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
71 disjsn 4607 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ ↔ ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
7270, 71sylibr 237 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅)
73 undif4 4374 . . . . . . . . 9 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
7472, 73syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
75 uncom 4080 . . . . . . . . . 10 ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓))
7675, 65syl5eq 2845 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = 𝐴)
7776difeq1d 4049 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}) = (𝐴 ∖ {(𝑓‘∅)}))
7874, 77eqtrd 2833 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (𝐴 ∖ {(𝑓‘∅)}))
7966, 78syl5eq 2845 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = (𝐴 ∖ {(𝑓‘∅)}))
8062, 65, 793brtr3d 5061 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ≈ (𝐴 ∖ {(𝑓‘∅)}))
8180ensymd 8543 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴)
82 entr 8544 . . . 4 (((𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
8313, 81, 82syl2anc 587 . . 3 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
842, 83exlimddv 1936 . 2 ((ω ≼ 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
85 difsn 4691 . . . 4 𝐵𝐴 → (𝐴 ∖ {𝐵}) = 𝐴)
8685adantl 485 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) = 𝐴)
87 enrefg 8524 . . . . 5 (𝐴 ∈ V → 𝐴𝐴)
884, 87syl 17 . . . 4 (ω ≼ 𝐴𝐴𝐴)
8988adantr 484 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → 𝐴𝐴)
9086, 89eqbrtrd 5052 . 2 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
9184, 90pm2.61dan 812 1 (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  ccnv 5518  ran crn 5520  cres 5521  cima 5522  Fun wfun 6318   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  ωcom 7560  cen 8489  cdom 8490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494
This theorem is referenced by:  infdiffi  9105  infdju1  9600  infpss  9628
  Copyright terms: Public domain W3C validator