MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdifsn Structured version   Visualization version   GIF version

Theorem infdifsn 9601
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infdifsn (Ο‰ β‰Ό 𝐴 β†’ (𝐴 βˆ– {𝐡}) β‰ˆ 𝐴)

Proof of Theorem infdifsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8904 . . . 4 (Ο‰ β‰Ό 𝐴 β†’ βˆƒπ‘“ 𝑓:ω–1-1→𝐴)
21adantr 482 . . 3 ((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) β†’ βˆƒπ‘“ 𝑓:ω–1-1→𝐴)
3 reldom 8895 . . . . . . 7 Rel β‰Ό
43brrelex2i 5693 . . . . . 6 (Ο‰ β‰Ό 𝐴 β†’ 𝐴 ∈ V)
54ad2antrr 725 . . . . 5 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ 𝐴 ∈ V)
6 simplr 768 . . . . 5 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ 𝐡 ∈ 𝐴)
7 f1f 6742 . . . . . . 7 (𝑓:ω–1-1→𝐴 β†’ 𝑓:Ο‰βŸΆπ΄)
87adantl 483 . . . . . 6 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ 𝑓:Ο‰βŸΆπ΄)
9 peano1 7829 . . . . . 6 βˆ… ∈ Ο‰
10 ffvelcdm 7036 . . . . . 6 ((𝑓:Ο‰βŸΆπ΄ ∧ βˆ… ∈ Ο‰) β†’ (π‘“β€˜βˆ…) ∈ 𝐴)
118, 9, 10sylancl 587 . . . . 5 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (π‘“β€˜βˆ…) ∈ 𝐴)
12 difsnen 9003 . . . . 5 ((𝐴 ∈ V ∧ 𝐡 ∈ 𝐴 ∧ (π‘“β€˜βˆ…) ∈ 𝐴) β†’ (𝐴 βˆ– {𝐡}) β‰ˆ (𝐴 βˆ– {(π‘“β€˜βˆ…)}))
135, 6, 11, 12syl3anc 1372 . . . 4 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝐴 βˆ– {𝐡}) β‰ˆ (𝐴 βˆ– {(π‘“β€˜βˆ…)}))
14 vex 3451 . . . . . . . . . 10 𝑓 ∈ V
15 f1f1orn 6799 . . . . . . . . . . 11 (𝑓:ω–1-1→𝐴 β†’ 𝑓:ω–1-1-ontoβ†’ran 𝑓)
1615adantl 483 . . . . . . . . . 10 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ 𝑓:ω–1-1-ontoβ†’ran 𝑓)
17 f1oen3g 8912 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ω–1-1-ontoβ†’ran 𝑓) β†’ Ο‰ β‰ˆ ran 𝑓)
1814, 16, 17sylancr 588 . . . . . . . . 9 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ Ο‰ β‰ˆ ran 𝑓)
1918ensymd 8951 . . . . . . . 8 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ran 𝑓 β‰ˆ Ο‰)
203brrelex1i 5692 . . . . . . . . . . 11 (Ο‰ β‰Ό 𝐴 β†’ Ο‰ ∈ V)
2120ad2antrr 725 . . . . . . . . . 10 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ Ο‰ ∈ V)
22 limom 7822 . . . . . . . . . . 11 Lim Ο‰
2322limenpsi 9102 . . . . . . . . . 10 (Ο‰ ∈ V β†’ Ο‰ β‰ˆ (Ο‰ βˆ– {βˆ…}))
2421, 23syl 17 . . . . . . . . 9 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ Ο‰ β‰ˆ (Ο‰ βˆ– {βˆ…}))
2514resex 5989 . . . . . . . . . . 11 (𝑓 β†Ύ (Ο‰ βˆ– {βˆ…})) ∈ V
26 simpr 486 . . . . . . . . . . . 12 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ 𝑓:ω–1-1→𝐴)
27 difss 4095 . . . . . . . . . . . 12 (Ο‰ βˆ– {βˆ…}) βŠ† Ο‰
28 f1ores 6802 . . . . . . . . . . . 12 ((𝑓:ω–1-1→𝐴 ∧ (Ο‰ βˆ– {βˆ…}) βŠ† Ο‰) β†’ (𝑓 β†Ύ (Ο‰ βˆ– {βˆ…})):(Ο‰ βˆ– {βˆ…})–1-1-ontoβ†’(𝑓 β€œ (Ο‰ βˆ– {βˆ…})))
2926, 27, 28sylancl 587 . . . . . . . . . . 11 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝑓 β†Ύ (Ο‰ βˆ– {βˆ…})):(Ο‰ βˆ– {βˆ…})–1-1-ontoβ†’(𝑓 β€œ (Ο‰ βˆ– {βˆ…})))
30 f1oen3g 8912 . . . . . . . . . . 11 (((𝑓 β†Ύ (Ο‰ βˆ– {βˆ…})) ∈ V ∧ (𝑓 β†Ύ (Ο‰ βˆ– {βˆ…})):(Ο‰ βˆ– {βˆ…})–1-1-ontoβ†’(𝑓 β€œ (Ο‰ βˆ– {βˆ…}))) β†’ (Ο‰ βˆ– {βˆ…}) β‰ˆ (𝑓 β€œ (Ο‰ βˆ– {βˆ…})))
3125, 29, 30sylancr 588 . . . . . . . . . 10 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (Ο‰ βˆ– {βˆ…}) β‰ˆ (𝑓 β€œ (Ο‰ βˆ– {βˆ…})))
32 f1orn 6798 . . . . . . . . . . . . 13 (𝑓:ω–1-1-ontoβ†’ran 𝑓 ↔ (𝑓 Fn Ο‰ ∧ Fun ◑𝑓))
3332simprbi 498 . . . . . . . . . . . 12 (𝑓:ω–1-1-ontoβ†’ran 𝑓 β†’ Fun ◑𝑓)
34 imadif 6589 . . . . . . . . . . . 12 (Fun ◑𝑓 β†’ (𝑓 β€œ (Ο‰ βˆ– {βˆ…})) = ((𝑓 β€œ Ο‰) βˆ– (𝑓 β€œ {βˆ…})))
3516, 33, 343syl 18 . . . . . . . . . . 11 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝑓 β€œ (Ο‰ βˆ– {βˆ…})) = ((𝑓 β€œ Ο‰) βˆ– (𝑓 β€œ {βˆ…})))
36 f1fn 6743 . . . . . . . . . . . . . 14 (𝑓:ω–1-1→𝐴 β†’ 𝑓 Fn Ο‰)
3736adantl 483 . . . . . . . . . . . . 13 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ 𝑓 Fn Ο‰)
38 fnima 6635 . . . . . . . . . . . . 13 (𝑓 Fn Ο‰ β†’ (𝑓 β€œ Ο‰) = ran 𝑓)
3937, 38syl 17 . . . . . . . . . . . 12 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝑓 β€œ Ο‰) = ran 𝑓)
40 fnsnfv 6924 . . . . . . . . . . . . . 14 ((𝑓 Fn Ο‰ ∧ βˆ… ∈ Ο‰) β†’ {(π‘“β€˜βˆ…)} = (𝑓 β€œ {βˆ…}))
4137, 9, 40sylancl 587 . . . . . . . . . . . . 13 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ {(π‘“β€˜βˆ…)} = (𝑓 β€œ {βˆ…}))
4241eqcomd 2739 . . . . . . . . . . . 12 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝑓 β€œ {βˆ…}) = {(π‘“β€˜βˆ…)})
4339, 42difeq12d 4087 . . . . . . . . . . 11 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ((𝑓 β€œ Ο‰) βˆ– (𝑓 β€œ {βˆ…})) = (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}))
4435, 43eqtrd 2773 . . . . . . . . . 10 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝑓 β€œ (Ο‰ βˆ– {βˆ…})) = (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}))
4531, 44breqtrd 5135 . . . . . . . . 9 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (Ο‰ βˆ– {βˆ…}) β‰ˆ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}))
46 entr 8952 . . . . . . . . 9 ((Ο‰ β‰ˆ (Ο‰ βˆ– {βˆ…}) ∧ (Ο‰ βˆ– {βˆ…}) β‰ˆ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)})) β†’ Ο‰ β‰ˆ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}))
4724, 45, 46syl2anc 585 . . . . . . . 8 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ Ο‰ β‰ˆ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}))
48 entr 8952 . . . . . . . 8 ((ran 𝑓 β‰ˆ Ο‰ ∧ Ο‰ β‰ˆ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)})) β†’ ran 𝑓 β‰ˆ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}))
4919, 47, 48syl2anc 585 . . . . . . 7 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ran 𝑓 β‰ˆ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}))
50 difexg 5288 . . . . . . . 8 (𝐴 ∈ V β†’ (𝐴 βˆ– ran 𝑓) ∈ V)
51 enrefg 8930 . . . . . . . 8 ((𝐴 βˆ– ran 𝑓) ∈ V β†’ (𝐴 βˆ– ran 𝑓) β‰ˆ (𝐴 βˆ– ran 𝑓))
525, 50, 513syl 18 . . . . . . 7 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝐴 βˆ– ran 𝑓) β‰ˆ (𝐴 βˆ– ran 𝑓))
53 disjdif 4435 . . . . . . . 8 (ran 𝑓 ∩ (𝐴 βˆ– ran 𝑓)) = βˆ…
5453a1i 11 . . . . . . 7 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (ran 𝑓 ∩ (𝐴 βˆ– ran 𝑓)) = βˆ…)
55 difss 4095 . . . . . . . . . 10 (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) βŠ† ran 𝑓
56 ssrin 4197 . . . . . . . . . 10 ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) βŠ† ran 𝑓 β†’ ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) ∩ (𝐴 βˆ– ran 𝑓)) βŠ† (ran 𝑓 ∩ (𝐴 βˆ– ran 𝑓)))
5755, 56ax-mp 5 . . . . . . . . 9 ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) ∩ (𝐴 βˆ– ran 𝑓)) βŠ† (ran 𝑓 ∩ (𝐴 βˆ– ran 𝑓))
58 sseq0 4363 . . . . . . . . 9 ((((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) ∩ (𝐴 βˆ– ran 𝑓)) βŠ† (ran 𝑓 ∩ (𝐴 βˆ– ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐴 βˆ– ran 𝑓)) = βˆ…) β†’ ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) ∩ (𝐴 βˆ– ran 𝑓)) = βˆ…)
5957, 53, 58mp2an 691 . . . . . . . 8 ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) ∩ (𝐴 βˆ– ran 𝑓)) = βˆ…
6059a1i 11 . . . . . . 7 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) ∩ (𝐴 βˆ– ran 𝑓)) = βˆ…)
61 unen 8996 . . . . . . 7 (((ran 𝑓 β‰ˆ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) ∧ (𝐴 βˆ– ran 𝑓) β‰ˆ (𝐴 βˆ– ran 𝑓)) ∧ ((ran 𝑓 ∩ (𝐴 βˆ– ran 𝑓)) = βˆ… ∧ ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) ∩ (𝐴 βˆ– ran 𝑓)) = βˆ…)) β†’ (ran 𝑓 βˆͺ (𝐴 βˆ– ran 𝑓)) β‰ˆ ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) βˆͺ (𝐴 βˆ– ran 𝑓)))
6249, 52, 54, 60, 61syl22anc 838 . . . . . 6 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (ran 𝑓 βˆͺ (𝐴 βˆ– ran 𝑓)) β‰ˆ ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) βˆͺ (𝐴 βˆ– ran 𝑓)))
638frnd 6680 . . . . . . 7 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ran 𝑓 βŠ† 𝐴)
64 undif 4445 . . . . . . 7 (ran 𝑓 βŠ† 𝐴 ↔ (ran 𝑓 βˆͺ (𝐴 βˆ– ran 𝑓)) = 𝐴)
6563, 64sylib 217 . . . . . 6 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (ran 𝑓 βˆͺ (𝐴 βˆ– ran 𝑓)) = 𝐴)
66 uncom 4117 . . . . . . 7 ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) βˆͺ (𝐴 βˆ– ran 𝑓)) = ((𝐴 βˆ– ran 𝑓) βˆͺ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}))
67 eldifn 4091 . . . . . . . . . . 11 ((π‘“β€˜βˆ…) ∈ (𝐴 βˆ– ran 𝑓) β†’ Β¬ (π‘“β€˜βˆ…) ∈ ran 𝑓)
68 fnfvelrn 7035 . . . . . . . . . . . 12 ((𝑓 Fn Ο‰ ∧ βˆ… ∈ Ο‰) β†’ (π‘“β€˜βˆ…) ∈ ran 𝑓)
6937, 9, 68sylancl 587 . . . . . . . . . . 11 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (π‘“β€˜βˆ…) ∈ ran 𝑓)
7067, 69nsyl3 138 . . . . . . . . . 10 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ Β¬ (π‘“β€˜βˆ…) ∈ (𝐴 βˆ– ran 𝑓))
71 disjsn 4676 . . . . . . . . . 10 (((𝐴 βˆ– ran 𝑓) ∩ {(π‘“β€˜βˆ…)}) = βˆ… ↔ Β¬ (π‘“β€˜βˆ…) ∈ (𝐴 βˆ– ran 𝑓))
7270, 71sylibr 233 . . . . . . . . 9 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ((𝐴 βˆ– ran 𝑓) ∩ {(π‘“β€˜βˆ…)}) = βˆ…)
73 undif4 4430 . . . . . . . . 9 (((𝐴 βˆ– ran 𝑓) ∩ {(π‘“β€˜βˆ…)}) = βˆ… β†’ ((𝐴 βˆ– ran 𝑓) βˆͺ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)})) = (((𝐴 βˆ– ran 𝑓) βˆͺ ran 𝑓) βˆ– {(π‘“β€˜βˆ…)}))
7472, 73syl 17 . . . . . . . 8 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ((𝐴 βˆ– ran 𝑓) βˆͺ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)})) = (((𝐴 βˆ– ran 𝑓) βˆͺ ran 𝑓) βˆ– {(π‘“β€˜βˆ…)}))
75 uncom 4117 . . . . . . . . . 10 ((𝐴 βˆ– ran 𝑓) βˆͺ ran 𝑓) = (ran 𝑓 βˆͺ (𝐴 βˆ– ran 𝑓))
7675, 65eqtrid 2785 . . . . . . . . 9 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ((𝐴 βˆ– ran 𝑓) βˆͺ ran 𝑓) = 𝐴)
7776difeq1d 4085 . . . . . . . 8 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (((𝐴 βˆ– ran 𝑓) βˆͺ ran 𝑓) βˆ– {(π‘“β€˜βˆ…)}) = (𝐴 βˆ– {(π‘“β€˜βˆ…)}))
7874, 77eqtrd 2773 . . . . . . 7 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ((𝐴 βˆ– ran 𝑓) βˆͺ (ran 𝑓 βˆ– {(π‘“β€˜βˆ…)})) = (𝐴 βˆ– {(π‘“β€˜βˆ…)}))
7966, 78eqtrid 2785 . . . . . 6 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ ((ran 𝑓 βˆ– {(π‘“β€˜βˆ…)}) βˆͺ (𝐴 βˆ– ran 𝑓)) = (𝐴 βˆ– {(π‘“β€˜βˆ…)}))
8062, 65, 793brtr3d 5140 . . . . 5 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ 𝐴 β‰ˆ (𝐴 βˆ– {(π‘“β€˜βˆ…)}))
8180ensymd 8951 . . . 4 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝐴 βˆ– {(π‘“β€˜βˆ…)}) β‰ˆ 𝐴)
82 entr 8952 . . . 4 (((𝐴 βˆ– {𝐡}) β‰ˆ (𝐴 βˆ– {(π‘“β€˜βˆ…)}) ∧ (𝐴 βˆ– {(π‘“β€˜βˆ…)}) β‰ˆ 𝐴) β†’ (𝐴 βˆ– {𝐡}) β‰ˆ 𝐴)
8313, 81, 82syl2anc 585 . . 3 (((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) ∧ 𝑓:ω–1-1→𝐴) β†’ (𝐴 βˆ– {𝐡}) β‰ˆ 𝐴)
842, 83exlimddv 1939 . 2 ((Ο‰ β‰Ό 𝐴 ∧ 𝐡 ∈ 𝐴) β†’ (𝐴 βˆ– {𝐡}) β‰ˆ 𝐴)
85 difsn 4762 . . . 4 (Β¬ 𝐡 ∈ 𝐴 β†’ (𝐴 βˆ– {𝐡}) = 𝐴)
8685adantl 483 . . 3 ((Ο‰ β‰Ό 𝐴 ∧ Β¬ 𝐡 ∈ 𝐴) β†’ (𝐴 βˆ– {𝐡}) = 𝐴)
87 enrefg 8930 . . . . 5 (𝐴 ∈ V β†’ 𝐴 β‰ˆ 𝐴)
884, 87syl 17 . . . 4 (Ο‰ β‰Ό 𝐴 β†’ 𝐴 β‰ˆ 𝐴)
8988adantr 482 . . 3 ((Ο‰ β‰Ό 𝐴 ∧ Β¬ 𝐡 ∈ 𝐴) β†’ 𝐴 β‰ˆ 𝐴)
9086, 89eqbrtrd 5131 . 2 ((Ο‰ β‰Ό 𝐴 ∧ Β¬ 𝐡 ∈ 𝐴) β†’ (𝐴 βˆ– {𝐡}) β‰ˆ 𝐴)
9184, 90pm2.61dan 812 1 (Ο‰ β‰Ό 𝐴 β†’ (𝐴 βˆ– {𝐡}) β‰ˆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  Vcvv 3447   βˆ– cdif 3911   βˆͺ cun 3912   ∩ cin 3913   βŠ† wss 3914  βˆ…c0 4286  {csn 4590   class class class wbr 5109  β—‘ccnv 5636  ran crn 5638   β†Ύ cres 5639   β€œ cima 5640  Fun wfun 6494   Fn wfn 6495  βŸΆwf 6496  β€“1-1β†’wf1 6497  β€“1-1-ontoβ†’wf1o 6499  β€˜cfv 6500  Ο‰com 7806   β‰ˆ cen 8886   β‰Ό cdom 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-er 8654  df-en 8890  df-dom 8891
This theorem is referenced by:  infdiffi  9602  infdju1  10133  infpss  10161
  Copyright terms: Public domain W3C validator