MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdifsn Structured version   Visualization version   GIF version

Theorem infdifsn 9112
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infdifsn (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem infdifsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8512 . . . 4 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
21adantr 481 . . 3 ((ω ≼ 𝐴𝐵𝐴) → ∃𝑓 𝑓:ω–1-1𝐴)
3 reldom 8507 . . . . . . 7 Rel ≼
43brrelex2i 5607 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
54ad2antrr 722 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ∈ V)
6 simplr 765 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐵𝐴)
7 f1f 6571 . . . . . . 7 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
87adantl 482 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
9 peano1 7592 . . . . . 6 ∅ ∈ ω
10 ffvelrn 6844 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ 𝐴)
118, 9, 10sylancl 586 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
12 difsnen 8591 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐴 ∧ (𝑓‘∅) ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
135, 6, 11, 12syl3anc 1365 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
14 vex 3502 . . . . . . . . . 10 𝑓 ∈ V
15 f1f1orn 6622 . . . . . . . . . . 11 (𝑓:ω–1-1𝐴𝑓:ω–1-1-onto→ran 𝑓)
1615adantl 482 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1-onto→ran 𝑓)
17 f1oen3g 8517 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ω–1-1-onto→ran 𝑓) → ω ≈ ran 𝑓)
1814, 16, 17sylancr 587 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ ran 𝑓)
1918ensymd 8552 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ ω)
203brrelex1i 5606 . . . . . . . . . . 11 (ω ≼ 𝐴 → ω ∈ V)
2120ad2antrr 722 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ∈ V)
22 limom 7586 . . . . . . . . . . 11 Lim ω
2322limenpsi 8684 . . . . . . . . . 10 (ω ∈ V → ω ≈ (ω ∖ {∅}))
2421, 23syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ω ∖ {∅}))
2514resex 5897 . . . . . . . . . . 11 (𝑓 ↾ (ω ∖ {∅})) ∈ V
26 simpr 485 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1𝐴)
27 difss 4111 . . . . . . . . . . . 12 (ω ∖ {∅}) ⊆ ω
28 f1ores 6625 . . . . . . . . . . . 12 ((𝑓:ω–1-1𝐴 ∧ (ω ∖ {∅}) ⊆ ω) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
2926, 27, 28sylancl 586 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
30 f1oen3g 8517 . . . . . . . . . . 11 (((𝑓 ↾ (ω ∖ {∅})) ∈ V ∧ (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅}))) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
3125, 29, 30sylancr 587 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
32 f1orn 6621 . . . . . . . . . . . . 13 (𝑓:ω–1-1-onto→ran 𝑓 ↔ (𝑓 Fn ω ∧ Fun 𝑓))
3332simprbi 497 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto→ran 𝑓 → Fun 𝑓)
34 imadif 6434 . . . . . . . . . . . 12 (Fun 𝑓 → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
3516, 33, 343syl 18 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
36 f1fn 6572 . . . . . . . . . . . . . 14 (𝑓:ω–1-1𝐴𝑓 Fn ω)
3736adantl 482 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓 Fn ω)
38 fnima 6474 . . . . . . . . . . . . 13 (𝑓 Fn ω → (𝑓 “ ω) = ran 𝑓)
3937, 38syl 17 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ ω) = ran 𝑓)
40 fnsnfv 6739 . . . . . . . . . . . . . 14 ((𝑓 Fn ω ∧ ∅ ∈ ω) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4137, 9, 40sylancl 586 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4241eqcomd 2831 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ {∅}) = {(𝑓‘∅)})
4339, 42difeq12d 4103 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝑓 “ ω) ∖ (𝑓 “ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4435, 43eqtrd 2860 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4531, 44breqtrd 5088 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
46 entr 8553 . . . . . . . . 9 ((ω ≈ (ω ∖ {∅}) ∧ (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4724, 45, 46syl2anc 584 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
48 entr 8553 . . . . . . . 8 ((ran 𝑓 ≈ ω ∧ ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4919, 47, 48syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
50 difexg 5227 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∖ ran 𝑓) ∈ V)
51 enrefg 8533 . . . . . . . 8 ((𝐴 ∖ ran 𝑓) ∈ V → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
525, 50, 513syl 18 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
53 disjdif 4423 . . . . . . . 8 (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅
5453a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅)
55 difss 4111 . . . . . . . . . 10 (ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓
56 ssrin 4213 . . . . . . . . . 10 ((ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓 → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)))
5755, 56ax-mp 5 . . . . . . . . 9 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓))
58 sseq0 4356 . . . . . . . . 9 ((((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
5957, 53, 58mp2an 688 . . . . . . . 8 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅
6059a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
61 unen 8588 . . . . . . 7 (((ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓)) ∧ ((ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅ ∧ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
6249, 52, 54, 60, 61syl22anc 836 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
638frnd 6517 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓𝐴)
64 undif 4432 . . . . . . 7 (ran 𝑓𝐴 ↔ (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
6563, 64sylib 219 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
66 uncom 4132 . . . . . . 7 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)}))
67 eldifn 4107 . . . . . . . . . . 11 ((𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓) → ¬ (𝑓‘∅) ∈ ran 𝑓)
68 fnfvelrn 6843 . . . . . . . . . . . 12 ((𝑓 Fn ω ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ ran 𝑓)
6937, 9, 68sylancl 586 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ ran 𝑓)
7067, 69nsyl3 140 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
71 disjsn 4645 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ ↔ ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
7270, 71sylibr 235 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅)
73 undif4 4418 . . . . . . . . 9 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
7472, 73syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
75 uncom 4132 . . . . . . . . . 10 ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓))
7675, 65syl5eq 2872 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = 𝐴)
7776difeq1d 4101 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}) = (𝐴 ∖ {(𝑓‘∅)}))
7874, 77eqtrd 2860 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (𝐴 ∖ {(𝑓‘∅)}))
7966, 78syl5eq 2872 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = (𝐴 ∖ {(𝑓‘∅)}))
8062, 65, 793brtr3d 5093 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ≈ (𝐴 ∖ {(𝑓‘∅)}))
8180ensymd 8552 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴)
82 entr 8553 . . . 4 (((𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
8313, 81, 82syl2anc 584 . . 3 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
842, 83exlimddv 1929 . 2 ((ω ≼ 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
85 difsn 4729 . . . 4 𝐵𝐴 → (𝐴 ∖ {𝐵}) = 𝐴)
8685adantl 482 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) = 𝐴)
87 enrefg 8533 . . . . 5 (𝐴 ∈ V → 𝐴𝐴)
884, 87syl 17 . . . 4 (ω ≼ 𝐴𝐴𝐴)
8988adantr 481 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → 𝐴𝐴)
9086, 89eqbrtrd 5084 . 2 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
9184, 90pm2.61dan 809 1 (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1530  wex 1773  wcel 2107  Vcvv 3499  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294  {csn 4563   class class class wbr 5062  ccnv 5552  ran crn 5554  cres 5555  cima 5556  Fun wfun 6345   Fn wfn 6346  wf 6347  1-1wf1 6348  1-1-ontowf1o 6350  cfv 6351  ωcom 7571  cen 8498  cdom 8499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-om 7572  df-1o 8096  df-er 8282  df-en 8502  df-dom 8503
This theorem is referenced by:  infdiffi  9113  infdju1  9607  infpss  9631
  Copyright terms: Public domain W3C validator