MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdifsn Structured version   Visualization version   GIF version

Theorem infdifsn 9518
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infdifsn (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem infdifsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8823 . . . 4 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
21adantr 482 . . 3 ((ω ≼ 𝐴𝐵𝐴) → ∃𝑓 𝑓:ω–1-1𝐴)
3 reldom 8814 . . . . . . 7 Rel ≼
43brrelex2i 5679 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
54ad2antrr 724 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ∈ V)
6 simplr 767 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐵𝐴)
7 f1f 6725 . . . . . . 7 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
87adantl 483 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
9 peano1 7807 . . . . . 6 ∅ ∈ ω
10 ffvelcdm 7019 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ 𝐴)
118, 9, 10sylancl 587 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
12 difsnen 8922 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐴 ∧ (𝑓‘∅) ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
135, 6, 11, 12syl3anc 1371 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
14 vex 3446 . . . . . . . . . 10 𝑓 ∈ V
15 f1f1orn 6782 . . . . . . . . . . 11 (𝑓:ω–1-1𝐴𝑓:ω–1-1-onto→ran 𝑓)
1615adantl 483 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1-onto→ran 𝑓)
17 f1oen3g 8831 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ω–1-1-onto→ran 𝑓) → ω ≈ ran 𝑓)
1814, 16, 17sylancr 588 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ ran 𝑓)
1918ensymd 8870 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ ω)
203brrelex1i 5678 . . . . . . . . . . 11 (ω ≼ 𝐴 → ω ∈ V)
2120ad2antrr 724 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ∈ V)
22 limom 7800 . . . . . . . . . . 11 Lim ω
2322limenpsi 9021 . . . . . . . . . 10 (ω ∈ V → ω ≈ (ω ∖ {∅}))
2421, 23syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ω ∖ {∅}))
2514resex 5975 . . . . . . . . . . 11 (𝑓 ↾ (ω ∖ {∅})) ∈ V
26 simpr 486 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1𝐴)
27 difss 4082 . . . . . . . . . . . 12 (ω ∖ {∅}) ⊆ ω
28 f1ores 6785 . . . . . . . . . . . 12 ((𝑓:ω–1-1𝐴 ∧ (ω ∖ {∅}) ⊆ ω) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
2926, 27, 28sylancl 587 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
30 f1oen3g 8831 . . . . . . . . . . 11 (((𝑓 ↾ (ω ∖ {∅})) ∈ V ∧ (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅}))) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
3125, 29, 30sylancr 588 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
32 f1orn 6781 . . . . . . . . . . . . 13 (𝑓:ω–1-1-onto→ran 𝑓 ↔ (𝑓 Fn ω ∧ Fun 𝑓))
3332simprbi 498 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto→ran 𝑓 → Fun 𝑓)
34 imadif 6572 . . . . . . . . . . . 12 (Fun 𝑓 → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
3516, 33, 343syl 18 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
36 f1fn 6726 . . . . . . . . . . . . . 14 (𝑓:ω–1-1𝐴𝑓 Fn ω)
3736adantl 483 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓 Fn ω)
38 fnima 6618 . . . . . . . . . . . . 13 (𝑓 Fn ω → (𝑓 “ ω) = ran 𝑓)
3937, 38syl 17 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ ω) = ran 𝑓)
40 fnsnfv 6907 . . . . . . . . . . . . . 14 ((𝑓 Fn ω ∧ ∅ ∈ ω) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4137, 9, 40sylancl 587 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4241eqcomd 2743 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ {∅}) = {(𝑓‘∅)})
4339, 42difeq12d 4074 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝑓 “ ω) ∖ (𝑓 “ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4435, 43eqtrd 2777 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4531, 44breqtrd 5122 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
46 entr 8871 . . . . . . . . 9 ((ω ≈ (ω ∖ {∅}) ∧ (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4724, 45, 46syl2anc 585 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
48 entr 8871 . . . . . . . 8 ((ran 𝑓 ≈ ω ∧ ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4919, 47, 48syl2anc 585 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
50 difexg 5275 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∖ ran 𝑓) ∈ V)
51 enrefg 8849 . . . . . . . 8 ((𝐴 ∖ ran 𝑓) ∈ V → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
525, 50, 513syl 18 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
53 disjdif 4422 . . . . . . . 8 (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅
5453a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅)
55 difss 4082 . . . . . . . . . 10 (ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓
56 ssrin 4184 . . . . . . . . . 10 ((ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓 → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)))
5755, 56ax-mp 5 . . . . . . . . 9 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓))
58 sseq0 4350 . . . . . . . . 9 ((((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
5957, 53, 58mp2an 690 . . . . . . . 8 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅
6059a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
61 unen 8915 . . . . . . 7 (((ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓)) ∧ ((ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅ ∧ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
6249, 52, 54, 60, 61syl22anc 837 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
638frnd 6663 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓𝐴)
64 undif 4432 . . . . . . 7 (ran 𝑓𝐴 ↔ (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
6563, 64sylib 217 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
66 uncom 4104 . . . . . . 7 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)}))
67 eldifn 4078 . . . . . . . . . . 11 ((𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓) → ¬ (𝑓‘∅) ∈ ran 𝑓)
68 fnfvelrn 7018 . . . . . . . . . . . 12 ((𝑓 Fn ω ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ ran 𝑓)
6937, 9, 68sylancl 587 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ ran 𝑓)
7067, 69nsyl3 138 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
71 disjsn 4663 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ ↔ ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
7270, 71sylibr 233 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅)
73 undif4 4417 . . . . . . . . 9 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
7472, 73syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
75 uncom 4104 . . . . . . . . . 10 ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓))
7675, 65eqtrid 2789 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = 𝐴)
7776difeq1d 4072 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}) = (𝐴 ∖ {(𝑓‘∅)}))
7874, 77eqtrd 2777 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (𝐴 ∖ {(𝑓‘∅)}))
7966, 78eqtrid 2789 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = (𝐴 ∖ {(𝑓‘∅)}))
8062, 65, 793brtr3d 5127 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ≈ (𝐴 ∖ {(𝑓‘∅)}))
8180ensymd 8870 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴)
82 entr 8871 . . . 4 (((𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
8313, 81, 82syl2anc 585 . . 3 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
842, 83exlimddv 1938 . 2 ((ω ≼ 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
85 difsn 4749 . . . 4 𝐵𝐴 → (𝐴 ∖ {𝐵}) = 𝐴)
8685adantl 483 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) = 𝐴)
87 enrefg 8849 . . . . 5 (𝐴 ∈ V → 𝐴𝐴)
884, 87syl 17 . . . 4 (ω ≼ 𝐴𝐴𝐴)
8988adantr 482 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → 𝐴𝐴)
9086, 89eqbrtrd 5118 . 2 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
9184, 90pm2.61dan 811 1 (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1541  wex 1781  wcel 2106  Vcvv 3442  cdif 3898  cun 3899  cin 3900  wss 3901  c0 4273  {csn 4577   class class class wbr 5096  ccnv 5623  ran crn 5625  cres 5626  cima 5627  Fun wfun 6477   Fn wfn 6478  wf 6479  1-1wf1 6480  1-1-ontowf1o 6482  cfv 6483  ωcom 7784  cen 8805  cdom 8806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-om 7785  df-er 8573  df-en 8809  df-dom 8810
This theorem is referenced by:  infdiffi  9519  infdju1  10050  infpss  10078
  Copyright terms: Public domain W3C validator