![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1f1orn | Structured version Visualization version GIF version |
Description: A one-to-one function maps one-to-one onto its range. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
f1f1orn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 6444 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | df-f1 6230 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 497 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → Fun ◡𝐹) |
4 | f1orn 6493 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) | |
5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ◡ccnv 5442 ran crn 5444 Fun wfun 6219 Fn wfn 6220 ⟶wf 6221 –1-1→wf1 6222 –1-1-onto→wf1o 6224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-in 3866 df-ss 3874 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 |
This theorem is referenced by: f1ores 6497 f1cnv 6506 f1cocnv1 6512 f1ocnvfvrneq 6907 fnwelem 7678 oacomf1olem 8040 domss2 8523 ssenen 8538 sucdom2 8560 f1finf1o 8591 f1dmvrnfibi 8654 f1fi 8657 marypha1lem 8743 hartogslem1 8852 infdifsn 8966 infxpenlem 9285 infxpenc2lem1 9291 fseqenlem2 9297 ac10ct 9306 acndom 9323 acndom2 9326 dfac12lem2 9416 dfac12lem3 9417 fictb 9513 fin23lem21 9607 axcc2lem 9704 pwfseqlem1 9926 pwfseqlem5 9931 hashf1lem1 13661 hashf1lem2 13662 4sqlem11 16120 xpsff1o2 16671 yoniso 17364 imasmndf1 17768 imasgrpf1 17973 conjsubgen 18132 cayley 18273 odinf 18420 sylow1lem2 18454 sylow2blem1 18475 gsumval3lem2 18747 gsumval3 18748 dprdf1 18872 islindf3 20652 uvcf1o 20672 2ndcdisj 21748 dis2ndc 21752 qtopf1 22108 ovolicc2lem4 23804 itg1addlem4 23983 basellem3 25342 fsumvma 25471 dchrisum0fno1 25769 usgrf1o 26639 uspgrf1oedg 26641 usgrf1oedg 26672 clwlkclwwlklem2a4 27462 clwlkclwwlklem2a 27463 fnpreimac 30106 fsumiunle 30229 cshf1o 30310 tocycfvres1 30399 tocycfvres2 30400 cycpmfv1 30402 cycpmfv2 30403 cycpmcl 30405 tocyccntz 30423 cycpmconjslem1 30434 cycpmconjslem2 30435 dimkerim 30627 esumiun 30970 erdszelem10 32055 mrsubff1o 32370 msubff1o 32412 f1omptsnlem 34148 pibt2 34229 matunitlindflem2 34420 dihcnvcl 37938 dihcnvid1 37939 dihcnvid2 37940 dihlspsnat 38000 dihglblem6 38007 dochocss 38033 dochnoncon 38058 mapdcnvcl 38319 mapdcnvid2 38324 eldioph2lem2 38843 dnwech 39133 disjf1o 40992 isomushgr 43473 ushrisomgr 43488 aacllem 44382 |
Copyright terms: Public domain | W3C validator |