![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dff1o5 | Structured version Visualization version GIF version |
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o5 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 6549 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
2 | dffo2 6809 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
3 | f1f 6787 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
4 | 3 | biantrurd 532 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (ran 𝐹 = 𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵))) |
5 | 2, 4 | bitr4id 290 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹:𝐴–onto→𝐵 ↔ ran 𝐹 = 𝐵)) |
6 | 5 | pm5.32i 574 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
7 | 1, 6 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ran crn 5673 ⟶wf 6538 –1-1→wf1 6539 –onto→wfo 6540 –1-1-onto→wf1o 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 |
This theorem is referenced by: f1orescnv 6848 domdifsn 9070 sucdom2OLD 9098 sucdom2 9222 ackbij1 10253 ackbij2 10258 fin4en1 10324 om2uzf1oi 13942 s4f1o 14893 fvcosymgeq 19375 indlcim 21761 2lgslem1b 27312 ausgrusgrb 28965 usgrexmpledg 29062 cdleme50f1o 39956 diaf1oN 40540 aks6d1c2 41533 pwssplit4 42435 cantnf2 42677 meadjiunlem 45776 |
Copyright terms: Public domain | W3C validator |