MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o5 Structured version   Visualization version   GIF version

Theorem dff1o5 6809
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 6518 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 dffo2 6776 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
3 f1f 6756 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
43biantrurd 532 . . . 4 (𝐹:𝐴1-1𝐵 → (ran 𝐹 = 𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵)))
52, 4bitr4id 290 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹:𝐴onto𝐵 ↔ ran 𝐹 = 𝐵))
65pm5.32i 574 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
71, 6bitri 275 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  ran crn 5639  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3931  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  f1orescnv  6815  f1ounsn  7247  domdifsn  9024  sucdom2  9167  ackbij1  10190  ackbij2  10195  fin4en1  10262  om2uzf1oi  13918  s4f1o  14884  fvcosymgeq  19359  indlcim  21749  2lgslem1b  27303  ausgrusgrb  29092  usgrexmpledg  29189  wrdpmtrlast  33050  onvf1od  35094  cdleme50f1o  40540  diaf1oN  41124  aks6d1c2  42118  pwssplit4  43078  cantnf2  43314  meadjiunlem  46463
  Copyright terms: Public domain W3C validator