| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o5 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6496 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | dffo2 6747 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 3 | f1f 6727 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 4 | 3 | biantrurd 532 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (ran 𝐹 = 𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵))) |
| 5 | 2, 4 | bitr4id 290 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹:𝐴–onto→𝐵 ↔ ran 𝐹 = 𝐵)) |
| 6 | 5 | pm5.32i 574 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ran crn 5622 ⟶wf 6485 –1-1→wf1 6486 –onto→wfo 6487 –1-1-onto→wf1o 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 |
| This theorem is referenced by: f1orescnv 6786 f1ounsn 7215 domdifsn 8984 sucdom2 9123 ackbij1 10139 ackbij2 10144 fin4en1 10211 om2uzf1oi 13867 s4f1o 14832 fvcosymgeq 19349 indlcim 21786 2lgslem1b 27350 ausgrusgrb 29164 usgrexmpledg 29261 wrdpmtrlast 33103 onvf1od 35223 cdleme50f1o 40718 diaf1oN 41302 aks6d1c2 42296 pwssplit4 43246 cantnf2 43482 meadjiunlem 46625 |
| Copyright terms: Public domain | W3C validator |