| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o5 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 6538 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
| 2 | dffo2 6794 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
| 3 | f1f 6774 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 4 | 3 | biantrurd 532 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (ran 𝐹 = 𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵))) |
| 5 | 2, 4 | bitr4id 290 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹:𝐴–onto→𝐵 ↔ ran 𝐹 = 𝐵)) |
| 6 | 5 | pm5.32i 574 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5655 ⟶wf 6527 –1-1→wf1 6528 –onto→wfo 6529 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: f1orescnv 6833 f1ounsn 7265 domdifsn 9068 sucdom2OLD 9096 sucdom2 9217 ackbij1 10251 ackbij2 10256 fin4en1 10323 om2uzf1oi 13971 s4f1o 14937 fvcosymgeq 19410 indlcim 21800 2lgslem1b 27355 ausgrusgrb 29144 usgrexmpledg 29241 wrdpmtrlast 33104 cdleme50f1o 40565 diaf1oN 41149 aks6d1c2 42143 pwssplit4 43113 cantnf2 43349 meadjiunlem 46494 |
| Copyright terms: Public domain | W3C validator |