MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o5 Structured version   Visualization version   GIF version

Theorem dff1o5 6840
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 6548 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 dffo2 6807 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
3 f1f 6785 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
43biantrurd 534 . . . 4 (𝐹:𝐴1-1𝐵 → (ran 𝐹 = 𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵)))
52, 4bitr4id 290 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹:𝐴onto𝐵 ↔ ran 𝐹 = 𝐵))
65pm5.32i 576 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
71, 6bitri 275 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  ran crn 5677  wf 6537  1-1wf1 6538  ontowfo 6539  1-1-ontowf1o 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3955  df-ss 3965  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548
This theorem is referenced by:  f1orescnv  6846  domdifsn  9051  sucdom2OLD  9079  sucdom2  9203  ackbij1  10230  ackbij2  10235  fin4en1  10301  om2uzf1oi  13915  s4f1o  14866  fvcosymgeq  19292  indlcim  21387  2lgslem1b  26885  ausgrusgrb  28415  usgrexmpledg  28509  cdleme50f1o  39406  diaf1oN  39990  pwssplit4  41817  cantnf2  42061  meadjiunlem  45168
  Copyright terms: Public domain W3C validator