MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o5 Structured version   Visualization version   GIF version

Theorem dff1o5 6791
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 6506 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 dffo2 6758 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
3 f1f 6738 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
43biantrurd 532 . . . 4 (𝐹:𝐴1-1𝐵 → (ran 𝐹 = 𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵)))
52, 4bitr4id 290 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹:𝐴onto𝐵 ↔ ran 𝐹 = 𝐵))
65pm5.32i 574 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
71, 6bitri 275 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  ran crn 5632  wf 6495  1-1wf1 6496  ontowfo 6497  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3928  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  f1orescnv  6797  f1ounsn  7229  domdifsn  9001  sucdom2  9144  ackbij1  10166  ackbij2  10171  fin4en1  10238  om2uzf1oi  13894  s4f1o  14860  fvcosymgeq  19335  indlcim  21725  2lgslem1b  27279  ausgrusgrb  29068  usgrexmpledg  29165  wrdpmtrlast  33023  onvf1od  35067  cdleme50f1o  40513  diaf1oN  41097  aks6d1c2  42091  pwssplit4  43051  cantnf2  43287  meadjiunlem  46436
  Copyright terms: Public domain W3C validator