MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffdm Structured version   Visualization version   GIF version

Theorem ffdm 6628
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
Assertion
Ref Expression
ffdm (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))

Proof of Theorem ffdm
StepHypRef Expression
1 fdm 6607 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
21feq2d 6584 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵𝐹:𝐴𝐵))
32ibir 267 . 2 (𝐹:𝐴𝐵𝐹:dom 𝐹𝐵)
4 eqimss 3982 . . 3 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
51, 4syl 17 . 2 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
63, 5jca 512 1 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wss 3892  dom cdm 5590  wf 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-ss 3909  df-fn 6435  df-f 6436
This theorem is referenced by:  ffdmd  6629  smoiso  8185  s4f1o  14642  islindf2  21032  fourierdlem92  43721  fouriersw  43754  etransclem2  43759
  Copyright terms: Public domain W3C validator