MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffdm Structured version   Visualization version   GIF version

Theorem ffdm 6777
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
Assertion
Ref Expression
ffdm (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))

Proof of Theorem ffdm
StepHypRef Expression
1 fdm 6756 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
21feq2d 6733 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵𝐹:𝐴𝐵))
32ibir 268 . 2 (𝐹:𝐴𝐵𝐹:dom 𝐹𝐵)
4 eqimss 4067 . . 3 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
51, 4syl 17 . 2 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
63, 5jca 511 1 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3976  dom cdm 5700  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993  df-fn 6576  df-f 6577
This theorem is referenced by:  ffdmd  6778  smoiso  8418  s4f1o  14967  islindf2  21857  fourierdlem92  46119  fouriersw  46152  etransclem2  46157
  Copyright terms: Public domain W3C validator