![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffdm | Structured version Visualization version GIF version |
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.) |
Ref | Expression |
---|---|
ffdm | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6264 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | 1 | feq2d 6242 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
3 | 2 | ibir 260 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:dom 𝐹⟶𝐵) |
4 | eqimss 3853 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
6 | 3, 5 | jca 508 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ⊆ wss 3769 dom cdm 5312 ⟶wf 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-in 3776 df-ss 3783 df-fn 6104 df-f 6105 |
This theorem is referenced by: ffdmd 6278 smoiso 7698 s4f1o 14003 islindf2 20478 fourierdlem92 41158 fouriersw 41191 etransclem2 41196 |
Copyright terms: Public domain | W3C validator |