Proof of Theorem islindf2
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → 𝑊 ∈ 𝑌) |
2 | | simp3 1136 |
. . . 4
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → 𝐹:𝐼⟶𝐵) |
3 | | simp2 1135 |
. . . 4
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → 𝐼 ∈ 𝑋) |
4 | 2, 3 | fexd 7085 |
. . 3
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → 𝐹 ∈ V) |
5 | | islindf.b |
. . . 4
⊢ 𝐵 = (Base‘𝑊) |
6 | | islindf.v |
. . . 4
⊢ · = (
·𝑠 ‘𝑊) |
7 | | islindf.k |
. . . 4
⊢ 𝐾 = (LSpan‘𝑊) |
8 | | islindf.s |
. . . 4
⊢ 𝑆 = (Scalar‘𝑊) |
9 | | islindf.n |
. . . 4
⊢ 𝑁 = (Base‘𝑆) |
10 | | islindf.z |
. . . 4
⊢ 0 =
(0g‘𝑆) |
11 | 5, 6, 7, 8, 9, 10 | islindf 20929 |
. . 3
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
12 | 1, 4, 11 | syl2anc 583 |
. 2
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
13 | | ffdm 6614 |
. . . . 5
⊢ (𝐹:𝐼⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐼)) |
14 | 13 | simpld 494 |
. . . 4
⊢ (𝐹:𝐼⟶𝐵 → 𝐹:dom 𝐹⟶𝐵) |
15 | 14 | 3ad2ant3 1133 |
. . 3
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → 𝐹:dom 𝐹⟶𝐵) |
16 | 15 | biantrurd 532 |
. 2
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
17 | | fdm 6593 |
. . . 4
⊢ (𝐹:𝐼⟶𝐵 → dom 𝐹 = 𝐼) |
18 | 17 | 3ad2ant3 1133 |
. . 3
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → dom 𝐹 = 𝐼) |
19 | 18 | difeq1d 4052 |
. . . . . . . 8
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (dom 𝐹 ∖ {𝑥}) = (𝐼 ∖ {𝑥})) |
20 | 19 | imaeq2d 5958 |
. . . . . . 7
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) = (𝐹 “ (𝐼 ∖ {𝑥}))) |
21 | 20 | fveq2d 6760 |
. . . . . 6
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))) |
22 | 21 | eleq2d 2824 |
. . . . 5
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → ((𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
23 | 22 | notbid 317 |
. . . 4
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
24 | 23 | ralbidv 3120 |
. . 3
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
25 | 18, 24 | raleqbidv 3327 |
. 2
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
26 | 12, 16, 25 | 3bitr2d 306 |
1
⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |