MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf2 Structured version   Visualization version   GIF version

Theorem islindf2 21770
Description: Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islindf2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘   𝐵,𝑘,𝑥   𝑘,𝐼,𝑥   𝑘,𝑋,𝑥   𝑘,𝑌,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem islindf2
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝑊𝑌)
2 simp3 1135 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
3 simp2 1134 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐼𝑋)
42, 3fexd 7239 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹 ∈ V)
5 islindf.b . . . 4 𝐵 = (Base‘𝑊)
6 islindf.v . . . 4 · = ( ·𝑠𝑊)
7 islindf.k . . . 4 𝐾 = (LSpan‘𝑊)
8 islindf.s . . . 4 𝑆 = (Scalar‘𝑊)
9 islindf.n . . . 4 𝑁 = (Base‘𝑆)
10 islindf.z . . . 4 0 = (0g𝑆)
115, 6, 7, 8, 9, 10islindf 21768 . . 3 ((𝑊𝑌𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
121, 4, 11syl2anc 582 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
13 ffdm 6753 . . . . 5 (𝐹:𝐼𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐼))
1413simpld 493 . . . 4 (𝐹:𝐼𝐵𝐹:dom 𝐹𝐵)
15143ad2ant3 1132 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹:dom 𝐹𝐵)
1615biantrurd 531 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
17 fdm 6732 . . . 4 (𝐹:𝐼𝐵 → dom 𝐹 = 𝐼)
18173ad2ant3 1132 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → dom 𝐹 = 𝐼)
1918difeq1d 4117 . . . . . . . 8 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (dom 𝐹 ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
2019imaeq2d 6064 . . . . . . 7 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) = (𝐹 “ (𝐼 ∖ {𝑥})))
2120fveq2d 6900 . . . . . 6 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))
2221eleq2d 2811 . . . . 5 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → ((𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2322notbid 317 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2423ralbidv 3167 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2518, 24raleqbidv 3329 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2612, 16, 253bitr2d 306 1 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  cdif 3941  wss 3944  {csn 4630   class class class wbr 5149  dom cdm 5678  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  Basecbs 17188  Scalarcsca 17244   ·𝑠 cvsca 17245  0gc0g 17429  LSpanclspn 20872   LIndF clindf 21760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-lindf 21762
This theorem is referenced by:  lindfmm  21783  islindf4  21794
  Copyright terms: Public domain W3C validator