MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf2 Structured version   Visualization version   GIF version

Theorem islindf2 20672
Description: Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islindf2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘   𝐵,𝑘,𝑥   𝑘,𝐼,𝑥   𝑘,𝑋,𝑥   𝑘,𝑌,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem islindf2
StepHypRef Expression
1 simp1 1116 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝑊𝑌)
2 simp3 1118 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
3 simp2 1117 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐼𝑋)
4 fex 6813 . . . 4 ((𝐹:𝐼𝐵𝐼𝑋) → 𝐹 ∈ V)
52, 3, 4syl2anc 576 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹 ∈ V)
6 islindf.b . . . 4 𝐵 = (Base‘𝑊)
7 islindf.v . . . 4 · = ( ·𝑠𝑊)
8 islindf.k . . . 4 𝐾 = (LSpan‘𝑊)
9 islindf.s . . . 4 𝑆 = (Scalar‘𝑊)
10 islindf.n . . . 4 𝑁 = (Base‘𝑆)
11 islindf.z . . . 4 0 = (0g𝑆)
126, 7, 8, 9, 10, 11islindf 20670 . . 3 ((𝑊𝑌𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
131, 5, 12syl2anc 576 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
14 ffdm 6362 . . . . 5 (𝐹:𝐼𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐼))
1514simpld 487 . . . 4 (𝐹:𝐼𝐵𝐹:dom 𝐹𝐵)
16153ad2ant3 1115 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹:dom 𝐹𝐵)
1716biantrurd 525 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
18 fdm 6349 . . . 4 (𝐹:𝐼𝐵 → dom 𝐹 = 𝐼)
19183ad2ant3 1115 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → dom 𝐹 = 𝐼)
2019difeq1d 3982 . . . . . . . 8 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (dom 𝐹 ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
2120imaeq2d 5767 . . . . . . 7 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) = (𝐹 “ (𝐼 ∖ {𝑥})))
2221fveq2d 6500 . . . . . 6 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))
2322eleq2d 2845 . . . . 5 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → ((𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2423notbid 310 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2524ralbidv 3141 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2619, 25raleqbidv 3335 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2713, 17, 263bitr2d 299 1 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3082  Vcvv 3409  cdif 3820  wss 3823  {csn 4435   class class class wbr 4925  dom cdm 5403  cima 5406  wf 6181  cfv 6185  (class class class)co 6974  Basecbs 16337  Scalarcsca 16422   ·𝑠 cvsca 16423  0gc0g 16567  LSpanclspn 19477   LIndF clindf 20662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-lindf 20664
This theorem is referenced by:  lindfmm  20685  islindf4  20696
  Copyright terms: Public domain W3C validator