MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf2 Structured version   Visualization version   GIF version

Theorem islindf2 20931
Description: Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islindf2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘   𝐵,𝑘,𝑥   𝑘,𝐼,𝑥   𝑘,𝑋,𝑥   𝑘,𝑌,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem islindf2
StepHypRef Expression
1 simp1 1134 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝑊𝑌)
2 simp3 1136 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
3 simp2 1135 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐼𝑋)
42, 3fexd 7085 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹 ∈ V)
5 islindf.b . . . 4 𝐵 = (Base‘𝑊)
6 islindf.v . . . 4 · = ( ·𝑠𝑊)
7 islindf.k . . . 4 𝐾 = (LSpan‘𝑊)
8 islindf.s . . . 4 𝑆 = (Scalar‘𝑊)
9 islindf.n . . . 4 𝑁 = (Base‘𝑆)
10 islindf.z . . . 4 0 = (0g𝑆)
115, 6, 7, 8, 9, 10islindf 20929 . . 3 ((𝑊𝑌𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
121, 4, 11syl2anc 583 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
13 ffdm 6614 . . . . 5 (𝐹:𝐼𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐼))
1413simpld 494 . . . 4 (𝐹:𝐼𝐵𝐹:dom 𝐹𝐵)
15143ad2ant3 1133 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹:dom 𝐹𝐵)
1615biantrurd 532 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
17 fdm 6593 . . . 4 (𝐹:𝐼𝐵 → dom 𝐹 = 𝐼)
18173ad2ant3 1133 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → dom 𝐹 = 𝐼)
1918difeq1d 4052 . . . . . . . 8 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (dom 𝐹 ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
2019imaeq2d 5958 . . . . . . 7 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) = (𝐹 “ (𝐼 ∖ {𝑥})))
2120fveq2d 6760 . . . . . 6 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))
2221eleq2d 2824 . . . . 5 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → ((𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2322notbid 317 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2423ralbidv 3120 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2518, 24raleqbidv 3327 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2612, 16, 253bitr2d 306 1 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070  dom cdm 5580  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LSpanclspn 20148   LIndF clindf 20921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-lindf 20923
This theorem is referenced by:  lindfmm  20944  islindf4  20955
  Copyright terms: Public domain W3C validator