MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islindf2 Structured version   Visualization version   GIF version

Theorem islindf2 21861
Description: Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
islindf.b 𝐵 = (Base‘𝑊)
islindf.v · = ( ·𝑠𝑊)
islindf.k 𝐾 = (LSpan‘𝑊)
islindf.s 𝑆 = (Scalar‘𝑊)
islindf.n 𝑁 = (Base‘𝑆)
islindf.z 0 = (0g𝑆)
Assertion
Ref Expression
islindf2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑁   𝑘,𝑊,𝑥   0 ,𝑘   𝐵,𝑘,𝑥   𝑘,𝐼,𝑥   𝑘,𝑋,𝑥   𝑘,𝑌,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑘)   · (𝑥,𝑘)   𝐾(𝑥,𝑘)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem islindf2
StepHypRef Expression
1 simp1 1137 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝑊𝑌)
2 simp3 1139 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
3 simp2 1138 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐼𝑋)
42, 3fexd 7254 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹 ∈ V)
5 islindf.b . . . 4 𝐵 = (Base‘𝑊)
6 islindf.v . . . 4 · = ( ·𝑠𝑊)
7 islindf.k . . . 4 𝐾 = (LSpan‘𝑊)
8 islindf.s . . . 4 𝑆 = (Scalar‘𝑊)
9 islindf.n . . . 4 𝑁 = (Base‘𝑆)
10 islindf.z . . . 4 0 = (0g𝑆)
115, 6, 7, 8, 9, 10islindf 21859 . . 3 ((𝑊𝑌𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
121, 4, 11syl2anc 584 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
13 ffdm 6773 . . . . 5 (𝐹:𝐼𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐼))
1413simpld 494 . . . 4 (𝐹:𝐼𝐵𝐹:dom 𝐹𝐵)
15143ad2ant3 1136 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → 𝐹:dom 𝐹𝐵)
1615biantrurd 532 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
17 fdm 6753 . . . 4 (𝐹:𝐼𝐵 → dom 𝐹 = 𝐼)
18173ad2ant3 1136 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → dom 𝐹 = 𝐼)
1918difeq1d 4138 . . . . . . . 8 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (dom 𝐹 ∖ {𝑥}) = (𝐼 ∖ {𝑥}))
2019imaeq2d 6085 . . . . . . 7 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) = (𝐹 “ (𝐼 ∖ {𝑥})))
2120fveq2d 6918 . . . . . 6 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))
2221eleq2d 2827 . . . . 5 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → ((𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2322notbid 318 . . . 4 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2423ralbidv 3178 . . 3 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2518, 24raleqbidv 3346 . 2 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
2612, 16, 253bitr2d 307 1 ((𝑊𝑌𝐼𝑋𝐹:𝐼𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥𝐼𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061  Vcvv 3481  cdif 3963  wss 3966  {csn 4634   class class class wbr 5151  dom cdm 5693  cima 5696  wf 6565  cfv 6569  (class class class)co 7438  Basecbs 17254  Scalarcsca 17310   ·𝑠 cvsca 17311  0gc0g 17495  LSpanclspn 20996   LIndF clindf 21851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-lindf 21853
This theorem is referenced by:  lindfmm  21874  islindf4  21885
  Copyright terms: Public domain W3C validator