Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem92 Structured version   Visualization version   GIF version

Theorem fourierdlem92 43739
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by its period 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem92.a (𝜑𝐴 ∈ ℝ)
fourierdlem92.b (𝜑𝐵 ∈ ℝ)
fourierdlem92.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem92.m (𝜑𝑀 ∈ ℕ)
fourierdlem92.t (𝜑𝑇 ∈ ℝ)
fourierdlem92.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem92.fper ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem92.s 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) + 𝑇))
fourierdlem92.h 𝐻 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem92.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem92.cncf ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem92.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem92.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem92 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑚,𝑝   𝑥,𝐵   𝑖,𝐹,𝑥   𝑥,𝐿   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑄,𝑖,𝑥   𝑄,𝑝   𝑥,𝑅   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑖,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝑆(𝑚)   𝐹(𝑚,𝑝)   𝐻(𝑥,𝑖,𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem92
Dummy variables 𝑦 𝑤 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem92.a . . . 4 (𝜑𝐴 ∈ ℝ)
21adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑇) → 𝐴 ∈ ℝ)
3 fourierdlem92.b . . . 4 (𝜑𝐵 ∈ ℝ)
43adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑇) → 𝐵 ∈ ℝ)
5 fourierdlem92.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
6 fourierdlem92.m . . . 4 (𝜑𝑀 ∈ ℕ)
76adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑇) → 𝑀 ∈ ℕ)
8 fourierdlem92.t . . . . 5 (𝜑𝑇 ∈ ℝ)
98adantr 481 . . . 4 ((𝜑 ∧ 0 < 𝑇) → 𝑇 ∈ ℝ)
10 simpr 485 . . . 4 ((𝜑 ∧ 0 < 𝑇) → 0 < 𝑇)
119, 10elrpd 12769 . . 3 ((𝜑 ∧ 0 < 𝑇) → 𝑇 ∈ ℝ+)
12 fourierdlem92.q . . . 4 (𝜑𝑄 ∈ (𝑃𝑀))
1312adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑇) → 𝑄 ∈ (𝑃𝑀))
14 fourierdlem92.fper . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
1514adantlr 712 . . 3 (((𝜑 ∧ 0 < 𝑇) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
16 fveq2 6774 . . . . 5 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
1716oveq1d 7290 . . . 4 (𝑗 = 𝑖 → ((𝑄𝑗) + 𝑇) = ((𝑄𝑖) + 𝑇))
1817cbvmptv 5187 . . 3 (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) + 𝑇)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) + 𝑇))
19 fourierdlem92.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
2019adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑇) → 𝐹:ℝ⟶ℂ)
21 fourierdlem92.cncf . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
2221adantlr 712 . . 3 (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
23 fourierdlem92.r . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2423adantlr 712 . . 3 (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
25 fourierdlem92.l . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2625adantlr 712 . . 3 (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
27 eqeq1 2742 . . . . 5 (𝑦 = 𝑥 → (𝑦 = (𝑄𝑖) ↔ 𝑥 = (𝑄𝑖)))
28 eqeq1 2742 . . . . . 6 (𝑦 = 𝑥 → (𝑦 = (𝑄‘(𝑖 + 1)) ↔ 𝑥 = (𝑄‘(𝑖 + 1))))
29 fveq2 6774 . . . . . 6 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3028, 29ifbieq2d 4485 . . . . 5 (𝑦 = 𝑥 → if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑦)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
3127, 30ifbieq2d 4485 . . . 4 (𝑦 = 𝑥 → if(𝑦 = (𝑄𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑦))) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
3231cbvmptv 5187 . . 3 (𝑦 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑦)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
33 eqid 2738 . . 3 (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) + 𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) + 𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑦))))‘(𝑥𝑇))) = (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) + 𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) + 𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑦))))‘(𝑥𝑇)))
342, 4, 5, 7, 11, 13, 15, 18, 20, 22, 24, 26, 32, 33fourierdlem81 43728 . 2 ((𝜑 ∧ 0 < 𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
35 simpr 485 . . . . . . . 8 ((𝜑𝑇 = 0) → 𝑇 = 0)
3635oveq2d 7291 . . . . . . 7 ((𝜑𝑇 = 0) → (𝐴 + 𝑇) = (𝐴 + 0))
371recnd 11003 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3837adantr 481 . . . . . . . 8 ((𝜑𝑇 = 0) → 𝐴 ∈ ℂ)
3938addid1d 11175 . . . . . . 7 ((𝜑𝑇 = 0) → (𝐴 + 0) = 𝐴)
4036, 39eqtrd 2778 . . . . . 6 ((𝜑𝑇 = 0) → (𝐴 + 𝑇) = 𝐴)
4135oveq2d 7291 . . . . . . 7 ((𝜑𝑇 = 0) → (𝐵 + 𝑇) = (𝐵 + 0))
423recnd 11003 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
4342adantr 481 . . . . . . . 8 ((𝜑𝑇 = 0) → 𝐵 ∈ ℂ)
4443addid1d 11175 . . . . . . 7 ((𝜑𝑇 = 0) → (𝐵 + 0) = 𝐵)
4541, 44eqtrd 2778 . . . . . 6 ((𝜑𝑇 = 0) → (𝐵 + 𝑇) = 𝐵)
4640, 45oveq12d 7293 . . . . 5 ((𝜑𝑇 = 0) → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = (𝐴[,]𝐵))
4746itgeq1d 43498 . . . 4 ((𝜑𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
4847adantlr 712 . . 3 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ 𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
49 simpll 764 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝜑)
50 simpr 485 . . . . . . 7 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ 𝑇 = 0)
51 simplr 766 . . . . . . 7 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ 0 < 𝑇)
52 ioran 981 . . . . . . 7 (¬ (𝑇 = 0 ∨ 0 < 𝑇) ↔ (¬ 𝑇 = 0 ∧ ¬ 0 < 𝑇))
5350, 51, 52sylanbrc 583 . . . . . 6 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ (𝑇 = 0 ∨ 0 < 𝑇))
5449, 8syl 17 . . . . . . 7 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝑇 ∈ ℝ)
55 0red 10978 . . . . . . 7 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 0 ∈ ℝ)
5654, 55lttrid 11113 . . . . . 6 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → (𝑇 < 0 ↔ ¬ (𝑇 = 0 ∨ 0 < 𝑇)))
5753, 56mpbird 256 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝑇 < 0)
5854lt0neg1d 11544 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → (𝑇 < 0 ↔ 0 < -𝑇))
5957, 58mpbid 231 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 0 < -𝑇)
601, 8readdcld 11004 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
6160recnd 11003 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝑇) ∈ ℂ)
628recnd 11003 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
6361, 62negsubd 11338 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝑇) + -𝑇) = ((𝐴 + 𝑇) − 𝑇))
6437, 62pncand 11333 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
6563, 64eqtrd 2778 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝑇) + -𝑇) = 𝐴)
663, 8readdcld 11004 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
6766recnd 11003 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝑇) ∈ ℂ)
6867, 62negsubd 11338 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝑇) + -𝑇) = ((𝐵 + 𝑇) − 𝑇))
6942, 62pncand 11333 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7068, 69eqtrd 2778 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝑇) + -𝑇) = 𝐵)
7165, 70oveq12d 7293 . . . . . . . 8 (𝜑 → (((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇)) = (𝐴[,]𝐵))
7271eqcomd 2744 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) = (((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇)))
7372itgeq1d 43498 . . . . . 6 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹𝑥) d𝑥)
7473adantr 481 . . . . 5 ((𝜑 ∧ 0 < -𝑇) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹𝑥) d𝑥)
751adantr 481 . . . . . . 7 ((𝜑 ∧ 0 < -𝑇) → 𝐴 ∈ ℝ)
768adantr 481 . . . . . . 7 ((𝜑 ∧ 0 < -𝑇) → 𝑇 ∈ ℝ)
7775, 76readdcld 11004 . . . . . 6 ((𝜑 ∧ 0 < -𝑇) → (𝐴 + 𝑇) ∈ ℝ)
783adantr 481 . . . . . . 7 ((𝜑 ∧ 0 < -𝑇) → 𝐵 ∈ ℝ)
7978, 76readdcld 11004 . . . . . 6 ((𝜑 ∧ 0 < -𝑇) → (𝐵 + 𝑇) ∈ ℝ)
80 eqid 2738 . . . . . 6 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
816adantr 481 . . . . . 6 ((𝜑 ∧ 0 < -𝑇) → 𝑀 ∈ ℕ)
8276renegcld 11402 . . . . . . 7 ((𝜑 ∧ 0 < -𝑇) → -𝑇 ∈ ℝ)
83 simpr 485 . . . . . . 7 ((𝜑 ∧ 0 < -𝑇) → 0 < -𝑇)
8482, 83elrpd 12769 . . . . . 6 ((𝜑 ∧ 0 < -𝑇) → -𝑇 ∈ ℝ+)
855fourierdlem2 43650 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
866, 85syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
8712, 86mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
8887simpld 495 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
89 elmapi 8637 . . . . . . . . . . . . . . 15 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
9088, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶ℝ)
9190ffvelrnda 6961 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
928adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑇 ∈ ℝ)
9391, 92readdcld 11004 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑄𝑖) + 𝑇) ∈ ℝ)
94 fourierdlem92.s . . . . . . . . . . . 12 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) + 𝑇))
9593, 94fmptd 6988 . . . . . . . . . . 11 (𝜑𝑆:(0...𝑀)⟶ℝ)
96 reex 10962 . . . . . . . . . . . . 13 ℝ ∈ V
9796a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
98 ovex 7308 . . . . . . . . . . . . 13 (0...𝑀) ∈ V
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ V)
10097, 99elmapd 8629 . . . . . . . . . . 11 (𝜑 → (𝑆 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑆:(0...𝑀)⟶ℝ))
10195, 100mpbird 256 . . . . . . . . . 10 (𝜑𝑆 ∈ (ℝ ↑m (0...𝑀)))
10294a1i 11 . . . . . . . . . . . . 13 (𝜑𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) + 𝑇)))
103 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
104103oveq1d 7290 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑄𝑖) + 𝑇) = ((𝑄‘0) + 𝑇))
105104adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑄𝑖) + 𝑇) = ((𝑄‘0) + 𝑇))
106 0zd 12331 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℤ)
1076nnzd 12425 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
108 0le0 12074 . . . . . . . . . . . . . . 15 0 ≤ 0
109108a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 0)
110 nnnn0 12240 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
111110nn0ge0d 12296 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
1126, 111syl 17 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑀)
113106, 107, 106, 109, 112elfzd 13247 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
11490, 113ffvelrnd 6962 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) ∈ ℝ)
115114, 8readdcld 11004 . . . . . . . . . . . . 13 (𝜑 → ((𝑄‘0) + 𝑇) ∈ ℝ)
116102, 105, 113, 115fvmptd 6882 . . . . . . . . . . . 12 (𝜑 → (𝑆‘0) = ((𝑄‘0) + 𝑇))
117 simprll 776 . . . . . . . . . . . . . 14 ((𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))) → (𝑄‘0) = 𝐴)
11887, 117syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) = 𝐴)
119118oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((𝑄‘0) + 𝑇) = (𝐴 + 𝑇))
120116, 119eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (𝑆‘0) = (𝐴 + 𝑇))
121 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 𝑀 → (𝑄𝑖) = (𝑄𝑀))
122121oveq1d 7290 . . . . . . . . . . . . . 14 (𝑖 = 𝑀 → ((𝑄𝑖) + 𝑇) = ((𝑄𝑀) + 𝑇))
123122adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 = 𝑀) → ((𝑄𝑖) + 𝑇) = ((𝑄𝑀) + 𝑇))
1246nnnn0d 12293 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
125 nn0uz 12620 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
126124, 125eleqtrdi 2849 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
127 eluzfz2 13264 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
128126, 127syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (0...𝑀))
12990, 128ffvelrnd 6962 . . . . . . . . . . . . . 14 (𝜑 → (𝑄𝑀) ∈ ℝ)
130129, 8readdcld 11004 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝑀) + 𝑇) ∈ ℝ)
131102, 123, 128, 130fvmptd 6882 . . . . . . . . . . . 12 (𝜑 → (𝑆𝑀) = ((𝑄𝑀) + 𝑇))
132 simprlr 777 . . . . . . . . . . . . . 14 ((𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))) → (𝑄𝑀) = 𝐵)
13387, 132syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑀) = 𝐵)
134133oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝑀) + 𝑇) = (𝐵 + 𝑇))
135131, 134eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (𝑆𝑀) = (𝐵 + 𝑇))
136120, 135jca 512 . . . . . . . . . 10 (𝜑 → ((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆𝑀) = (𝐵 + 𝑇)))
13790adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
138 elfzofz 13403 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
139138adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
140137, 139ffvelrnd 6962 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
141 fzofzp1 13484 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
142141adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
143137, 142ffvelrnd 6962 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
1448adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℝ)
14587simprrd 771 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
146145r19.21bi 3134 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
147140, 143, 144, 146ltadd1dd 11586 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇))
148140, 144readdcld 11004 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑇) ∈ ℝ)
14994fvmpt2 6886 . . . . . . . . . . . . 13 ((𝑖 ∈ (0...𝑀) ∧ ((𝑄𝑖) + 𝑇) ∈ ℝ) → (𝑆𝑖) = ((𝑄𝑖) + 𝑇))
150139, 148, 149syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆𝑖) = ((𝑄𝑖) + 𝑇))
15194, 18eqtr4i 2769 . . . . . . . . . . . . . 14 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) + 𝑇))
152151a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) + 𝑇)))
153 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → (𝑄𝑗) = (𝑄‘(𝑖 + 1)))
154153oveq1d 7290 . . . . . . . . . . . . . 14 (𝑗 = (𝑖 + 1) → ((𝑄𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇))
155154adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇))
156143, 144readdcld 11004 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ)
157152, 155, 142, 156fvmptd 6882 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) + 𝑇))
158147, 150, 1573brtr4d 5106 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆𝑖) < (𝑆‘(𝑖 + 1)))
159158ralrimiva 3103 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))
160101, 136, 159jca32 516 . . . . . . . . 9 (𝜑 → (𝑆 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
161 fourierdlem92.h . . . . . . . . . . 11 𝐻 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
162161fourierdlem2 43650 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑆 ∈ (𝐻𝑀) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
1636, 162syl 17 . . . . . . . . 9 (𝜑 → (𝑆 ∈ (𝐻𝑀) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
164160, 163mpbird 256 . . . . . . . 8 (𝜑𝑆 ∈ (𝐻𝑀))
165161fveq1i 6775 . . . . . . . 8 (𝐻𝑀) = ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀)
166164, 165eleqtrdi 2849 . . . . . . 7 (𝜑𝑆 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
167166adantr 481 . . . . . 6 ((𝜑 ∧ 0 < -𝑇) → 𝑆 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
16860adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
16966adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
170 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
171 eliccre 43043 . . . . . . . . . . . 12 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
172168, 169, 170, 171syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
173172recnd 11003 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
17462negcld 11319 . . . . . . . . . . 11 (𝜑 → -𝑇 ∈ ℂ)
175174adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → -𝑇 ∈ ℂ)
176173, 175addcld 10994 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ ℂ)
177 simpl 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝜑)
1781adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
1793adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
1808renegcld 11402 . . . . . . . . . . . . 13 (𝜑 → -𝑇 ∈ ℝ)
181180adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → -𝑇 ∈ ℝ)
182172, 181readdcld 11004 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ ℝ)
18363, 64eqtr2d 2779 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝐴 + 𝑇) + -𝑇))
184183adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) + -𝑇))
185168rexrd 11025 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ*)
186169rexrd 11025 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ*)
187 iccgelb 13135 . . . . . . . . . . . . . 14 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
188185, 186, 170, 187syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
189168, 172, 181, 188leadd1dd 11589 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) + -𝑇) ≤ (𝑥 + -𝑇))
190184, 189eqbrtrd 5096 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥 + -𝑇))
191 iccleub 13134 . . . . . . . . . . . . . 14 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
192185, 186, 170, 191syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
193172, 169, 181, 192leadd1dd 11589 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ≤ ((𝐵 + 𝑇) + -𝑇))
194169recnd 11003 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℂ)
19562adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
196194, 195negsubd 11338 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) + -𝑇) = ((𝐵 + 𝑇) − 𝑇))
19769adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
198196, 197eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) + -𝑇) = 𝐵)
199193, 198breqtrd 5100 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ≤ 𝐵)
200178, 179, 182, 190, 199eliccd 43042 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ (𝐴[,]𝐵))
201177, 200jca 512 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)))
202 eleq1 2826 . . . . . . . . . . . 12 (𝑦 = (𝑥 + -𝑇) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)))
203202anbi2d 629 . . . . . . . . . . 11 (𝑦 = (𝑥 + -𝑇) → ((𝜑𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵))))
204 oveq1 7282 . . . . . . . . . . . . 13 (𝑦 = (𝑥 + -𝑇) → (𝑦 + 𝑇) = ((𝑥 + -𝑇) + 𝑇))
205204fveq2d 6778 . . . . . . . . . . . 12 (𝑦 = (𝑥 + -𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥 + -𝑇) + 𝑇)))
206 fveq2 6774 . . . . . . . . . . . 12 (𝑦 = (𝑥 + -𝑇) → (𝐹𝑦) = (𝐹‘(𝑥 + -𝑇)))
207205, 206eqeq12d 2754 . . . . . . . . . . 11 (𝑦 = (𝑥 + -𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦) ↔ (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇))))
208203, 207imbi12d 345 . . . . . . . . . 10 (𝑦 = (𝑥 + -𝑇) → (((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)) ↔ ((𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇)))))
209 eleq1 2826 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑦 ∈ (𝐴[,]𝐵)))
210209anbi2d 629 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑𝑦 ∈ (𝐴[,]𝐵))))
211 oveq1 7282 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇))
212211fveq2d 6778 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇)))
213 fveq2 6774 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
214212, 213eqeq12d 2754 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)))
215210, 214imbi12d 345 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))))
216215, 14chvarvv 2002 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
217208, 216vtoclg 3505 . . . . . . . . 9 ((𝑥 + -𝑇) ∈ ℂ → ((𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇))))
218176, 201, 217sylc 65 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇)))
219173, 195negsubd 11338 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) = (𝑥𝑇))
220219oveq1d 7290 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 + -𝑇) + 𝑇) = ((𝑥𝑇) + 𝑇))
221173, 195npcand 11336 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
222220, 221eqtrd 2778 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 + -𝑇) + 𝑇) = 𝑥)
223222fveq2d 6778 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹𝑥))
224218, 223eqtr3d 2780 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥 + -𝑇)) = (𝐹𝑥))
225224adantlr 712 . . . . . 6 (((𝜑 ∧ 0 < -𝑇) ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥 + -𝑇)) = (𝐹𝑥))
226 fveq2 6774 . . . . . . . 8 (𝑗 = 𝑖 → (𝑆𝑗) = (𝑆𝑖))
227226oveq1d 7290 . . . . . . 7 (𝑗 = 𝑖 → ((𝑆𝑗) + -𝑇) = ((𝑆𝑖) + -𝑇))
228227cbvmptv 5187 . . . . . 6 (𝑗 ∈ (0...𝑀) ↦ ((𝑆𝑗) + -𝑇)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑆𝑖) + -𝑇))
22919adantr 481 . . . . . 6 ((𝜑 ∧ 0 < -𝑇) → 𝐹:ℝ⟶ℂ)
23019adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ)
231 ioossre 13140 . . . . . . . . . . 11 ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ
232231a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ)
233230, 232feqresmpt 6838 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹𝑥)))
234150, 157oveq12d 7293 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1))) = (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)))
235140, 143, 144iooshift 43060 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)})
236234, 235eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1))) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)})
237236mpteq1d 5169 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ (𝐹𝑥)))
238 simpll 764 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝜑)
239 simplr 766 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑖 ∈ (0..^𝑀))
240235eleq2d 2824 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) ↔ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}))
241240biimpar 478 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)))
242140rexrd 11025 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
2432423adant3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄𝑖) ∈ ℝ*)
244143rexrd 11025 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
2452443adant3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
246 elioore 13109 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) → 𝑥 ∈ ℝ)
247246adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ)
2488adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑇 ∈ ℝ)
249247, 248resubcld 11403 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥𝑇) ∈ ℝ)
2502493adant2 1130 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥𝑇) ∈ ℝ)
251140recnd 11003 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
25262adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℂ)
253251, 252pncand 11333 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑇) − 𝑇) = (𝑄𝑖))
254253eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (((𝑄𝑖) + 𝑇) − 𝑇))
2552543adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄𝑖) = (((𝑄𝑖) + 𝑇) − 𝑇))
2561483adant3 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄𝑖) + 𝑇) ∈ ℝ)
2572473adant2 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ)
25883ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑇 ∈ ℝ)
259148rexrd 11025 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑇) ∈ ℝ*)
2602593adant3 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄𝑖) + 𝑇) ∈ ℝ*)
261156rexrd 11025 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ*)
2622613adant3 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ*)
263 simp3 1137 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)))
264 ioogtlb 43033 . . . . . . . . . . . . . . . . 17 ((((𝑄𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ*𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄𝑖) + 𝑇) < 𝑥)
265260, 262, 263, 264syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄𝑖) + 𝑇) < 𝑥)
266256, 257, 258, 265ltsub1dd 11587 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄𝑖) + 𝑇) − 𝑇) < (𝑥𝑇))
267255, 266eqbrtrd 5096 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄𝑖) < (𝑥𝑇))
2681563adant3 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ)
269 iooltub 43048 . . . . . . . . . . . . . . . . 17 ((((𝑄𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ*𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 < ((𝑄‘(𝑖 + 1)) + 𝑇))
270260, 262, 263, 269syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 < ((𝑄‘(𝑖 + 1)) + 𝑇))
271257, 268, 258, 270ltsub1dd 11587 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥𝑇) < (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇))
272143recnd 11003 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
273272, 252pncand 11333 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1)))
2742733adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1)))
275271, 274breqtrd 5100 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥𝑇) < (𝑄‘(𝑖 + 1)))
276243, 245, 250, 267, 275eliood 43036 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥𝑇) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
277238, 239, 241, 276syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥𝑇) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
278 fvres 6793 . . . . . . . . . . . 12 ((𝑥𝑇) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇)) = (𝐹‘(𝑥𝑇)))
279277, 278syl 17 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇)) = (𝐹‘(𝑥𝑇)))
280238, 241, 249syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥𝑇) ∈ ℝ)
28113ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 ∈ ℝ)
28233ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐵 ∈ ℝ)
28364eqcomd 2744 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
2842833ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
285603ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
2861adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ)
2871rexrd 11025 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ∈ ℝ*)
288287adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
2893rexrd 11025 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐵 ∈ ℝ*)
290289adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
2915, 6, 12fourierdlem15 43663 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
292291adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
293292, 139ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
294 iccgelb 13135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝑖) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝑖))
295288, 290, 293, 294syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ≤ (𝑄𝑖))
296286, 140, 144, 295leadd1dd 11589 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴 + 𝑇) ≤ ((𝑄𝑖) + 𝑇))
2972963adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) ≤ ((𝑄𝑖) + 𝑇))
298285, 256, 257, 297, 265lelttrd 11133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
299285, 257, 258, 298ltsub1dd 11587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥𝑇))
300284, 299eqbrtrd 5096 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 < (𝑥𝑇))
301281, 250, 300ltled 11123 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
3021433adant3 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
303292, 142ffvelrnd 6962 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵))
304 iccleub 13134 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
305288, 290, 303, 304syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
3063053adant3 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
307250, 302, 282, 275, 306ltletrd 11135 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥𝑇) < 𝐵)
308250, 282, 307ltled 11123 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
309281, 282, 250, 301, 308eliccd 43042 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
310238, 239, 241, 309syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
311238, 310jca 512 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝜑 ∧ (𝑥𝑇) ∈ (𝐴[,]𝐵)))
312 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥𝑇) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑥𝑇) ∈ (𝐴[,]𝐵)))
313312anbi2d 629 . . . . . . . . . . . . . 14 (𝑦 = (𝑥𝑇) → ((𝜑𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑥𝑇) ∈ (𝐴[,]𝐵))))
314 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥𝑇) → (𝑦 + 𝑇) = ((𝑥𝑇) + 𝑇))
315314fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥𝑇) + 𝑇)))
316 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥𝑇) → (𝐹𝑦) = (𝐹‘(𝑥𝑇)))
317315, 316eqeq12d 2754 . . . . . . . . . . . . . 14 (𝑦 = (𝑥𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦) ↔ (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹‘(𝑥𝑇))))
318313, 317imbi12d 345 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝑇) → (((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)) ↔ ((𝜑 ∧ (𝑥𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹‘(𝑥𝑇)))))
319318, 216vtoclg 3505 . . . . . . . . . . . 12 ((𝑥𝑇) ∈ ℝ → ((𝜑 ∧ (𝑥𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹‘(𝑥𝑇))))
320280, 311, 319sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹‘(𝑥𝑇)))
321241, 246syl 17 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ℝ)
322 recn 10961 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
323322adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
32462adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝑇 ∈ ℂ)
325323, 324npcand 11336 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → ((𝑥𝑇) + 𝑇) = 𝑥)
326325fveq2d 6778 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹𝑥))
327238, 321, 326syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹𝑥))
328279, 320, 3273eqtr2rd 2785 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹𝑥) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇)))
329328mpteq2dva 5174 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇))))
330233, 237, 3293eqtrd 2782 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇))))
331 ioosscn 13141 . . . . . . . . . . 11 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
332331a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
333 eqeq1 2742 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
334333rexbidv 3226 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇)))
335 oveq1 7282 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
336335eqeq2d 2749 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
337336cbvrexvw 3384 . . . . . . . . . . . 12 (∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇))
338334, 337bitrdi 287 . . . . . . . . . . 11 (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)))
339338cbvrabv 3426 . . . . . . . . . 10 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}
340 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇)))
341332, 252, 339, 21, 340cncfshift 43415 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
342236eqcomd 2744 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1))))
343342oveq1d 7290 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ) = (((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ))
344341, 343eleqtrd 2841 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥𝑇))) ∈ (((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ))
345330, 344eqeltrd 2839 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) ∈ (((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ))
346345adantlr 712 . . . . . 6 (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) ∈ (((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ))
347 ffdm 6630 . . . . . . . . . . . 12 (𝐹:ℝ⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
34819, 347syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
349348simpld 495 . . . . . . . . . 10 (𝜑𝐹:dom 𝐹⟶ℂ)
350349adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:dom 𝐹⟶ℂ)
351 ioossre 13140 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
352 fdm 6609 . . . . . . . . . . 11 (𝐹:ℝ⟶ℂ → dom 𝐹 = ℝ)
353230, 352syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = ℝ)
354351, 353sseqtrrid 3974 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
355339eqcomi 2747 . . . . . . . . 9 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}
356232, 342, 3533sstr4d 3968 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹)
357339, 356eqsstrrid 3970 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} ⊆ dom 𝐹)
358 simpll 764 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
359358, 287syl 17 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ*)
360358, 289syl 17 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ*)
361358, 291syl 17 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
362 simplr 766 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
363 ioossicc 13165 . . . . . . . . . . . . 13 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
364363sseli 3917 . . . . . . . . . . . 12 (𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑧 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
365364adantl 482 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
366359, 360, 361, 362, 365fourierdlem1 43649 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ (𝐴[,]𝐵))
367 eleq1 2826 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑧 ∈ (𝐴[,]𝐵)))
368367anbi2d 629 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝜑𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑𝑧 ∈ (𝐴[,]𝐵))))
369 oveq1 7282 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥 + 𝑇) = (𝑧 + 𝑇))
370369fveq2d 6778 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑧 + 𝑇)))
371 fveq2 6774 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
372370, 371eqeq12d 2754 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑧 + 𝑇)) = (𝐹𝑧)))
373368, 372imbi12d 345 . . . . . . . . . . 11 (𝑥 = 𝑧 → (((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹𝑧))))
374373, 14chvarvv 2002 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹𝑧))
375358, 366, 374syl2anc 584 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑧 + 𝑇)) = (𝐹𝑧))
376350, 332, 354, 252, 355, 357, 375, 23limcperiod 43169 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) lim ((𝑄𝑖) + 𝑇)))
377355, 342eqtrid 2790 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} = ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1))))
378377reseq2d 5891 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) = (𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))))
379150eqcomd 2744 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑇) = (𝑆𝑖))
380378, 379oveq12d 7293 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) lim ((𝑄𝑖) + 𝑇)) = ((𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) lim (𝑆𝑖)))
381376, 380eleqtrd 2841 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) lim (𝑆𝑖)))
382381adantlr 712 . . . . . 6 (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) lim (𝑆𝑖)))
383350, 332, 354, 252, 355, 357, 375, 25limcperiod 43169 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) lim ((𝑄‘(𝑖 + 1)) + 𝑇)))
384157eqcomd 2744 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) = (𝑆‘(𝑖 + 1)))
385378, 384oveq12d 7293 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) lim ((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) lim (𝑆‘(𝑖 + 1))))
386383, 385eleqtrd 2841 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) lim (𝑆‘(𝑖 + 1))))
387386adantlr 712 . . . . . 6 (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑆𝑖)(,)(𝑆‘(𝑖 + 1)))) lim (𝑆‘(𝑖 + 1))))
388 eqeq1 2742 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 = (𝑆𝑖) ↔ 𝑥 = (𝑆𝑖)))
389 eqeq1 2742 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 = (𝑆‘(𝑖 + 1)) ↔ 𝑥 = (𝑆‘(𝑖 + 1))))
390389, 29ifbieq2d 4485 . . . . . . . 8 (𝑦 = 𝑥 → if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹𝑦)) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
391388, 390ifbieq2d 4485 . . . . . . 7 (𝑦 = 𝑥 → if(𝑦 = (𝑆𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹𝑦))) = if(𝑥 = (𝑆𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
392391cbvmptv 5187 . . . . . 6 (𝑦 ∈ ((𝑆𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹𝑦)))) = (𝑥 ∈ ((𝑆𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
393 eqid 2738 . . . . . 6 (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑆𝑗) + -𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑆𝑗) + -𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑆𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹𝑦))))‘(𝑥 − -𝑇))) = (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑆𝑗) + -𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑆𝑗) + -𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑆𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹𝑦))))‘(𝑥 − -𝑇)))
39477, 79, 80, 81, 84, 167, 225, 228, 229, 346, 382, 387, 392, 393fourierdlem81 43728 . . . . 5 ((𝜑 ∧ 0 < -𝑇) → ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥)
39574, 394eqtr2d 2779 . . . 4 ((𝜑 ∧ 0 < -𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
39649, 59, 395syl2anc 584 . . 3 (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
39748, 396pm2.61dan 810 . 2 ((𝜑 ∧ ¬ 0 < 𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
39834, 397pm2.61dan 810 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  cuz 12582  (,)cioo 13079  [,]cicc 13082  ...cfz 13239  ..^cfzo 13382  cnccncf 24039  citg 24782   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-ditg 25011  df-limc 25030  df-dv 25031
This theorem is referenced by:  fourierdlem107  43754
  Copyright terms: Public domain W3C validator