Step | Hyp | Ref
| Expression |
1 | | fourierdlem92.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝐴 ∈ ℝ) |
3 | | fourierdlem92.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝐵 ∈ ℝ) |
5 | | fourierdlem92.p |
. . 3
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
6 | | fourierdlem92.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
7 | 6 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝑀 ∈ ℕ) |
8 | | fourierdlem92.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ ℝ) |
9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝑇 ∈ ℝ) |
10 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑇) → 0 < 𝑇) |
11 | 9, 10 | elrpd 12769 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝑇 ∈
ℝ+) |
12 | | fourierdlem92.q |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
13 | 12 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝑄 ∈ (𝑃‘𝑀)) |
14 | | fourierdlem92.fper |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
15 | 14 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑇) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
16 | | fveq2 6774 |
. . . . 5
⊢ (𝑗 = 𝑖 → (𝑄‘𝑗) = (𝑄‘𝑖)) |
17 | 16 | oveq1d 7290 |
. . . 4
⊢ (𝑗 = 𝑖 → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘𝑖) + 𝑇)) |
18 | 17 | cbvmptv 5187 |
. . 3
⊢ (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) |
19 | | fourierdlem92.f |
. . . 4
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
20 | 19 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝐹:ℝ⟶ℂ) |
21 | | fourierdlem92.cncf |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
22 | 21 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
23 | | fourierdlem92.r |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
24 | 23 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
25 | | fourierdlem92.l |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
26 | 25 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
27 | | eqeq1 2742 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑄‘𝑖) ↔ 𝑥 = (𝑄‘𝑖))) |
28 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑄‘(𝑖 + 1)) ↔ 𝑥 = (𝑄‘(𝑖 + 1)))) |
29 | | fveq2 6774 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
30 | 28, 29 | ifbieq2d 4485 |
. . . . 5
⊢ (𝑦 = 𝑥 → if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
31 | 27, 30 | ifbieq2d 4485 |
. . . 4
⊢ (𝑦 = 𝑥 → if(𝑦 = (𝑄‘𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
32 | 31 | cbvmptv 5187 |
. . 3
⊢ (𝑦 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄‘𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦)))) = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
33 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄‘𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))))‘(𝑥 − 𝑇))) = (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄‘𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))))‘(𝑥 − 𝑇))) |
34 | 2, 4, 5, 7, 11, 13, 15, 18, 20, 22, 24, 26, 32, 33 | fourierdlem81 43728 |
. 2
⊢ ((𝜑 ∧ 0 < 𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
35 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 = 0) → 𝑇 = 0) |
36 | 35 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐴 + 𝑇) = (𝐴 + 0)) |
37 | 1 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
38 | 37 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 = 0) → 𝐴 ∈ ℂ) |
39 | 38 | addid1d 11175 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐴 + 0) = 𝐴) |
40 | 36, 39 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐴 + 𝑇) = 𝐴) |
41 | 35 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐵 + 𝑇) = (𝐵 + 0)) |
42 | 3 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℂ) |
43 | 42 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 = 0) → 𝐵 ∈ ℂ) |
44 | 43 | addid1d 11175 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐵 + 0) = 𝐵) |
45 | 41, 44 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐵 + 𝑇) = 𝐵) |
46 | 40, 45 | oveq12d 7293 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 = 0) → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = (𝐴[,]𝐵)) |
47 | 46 | itgeq1d 43498 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
48 | 47 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ 𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
49 | | simpll 764 |
. . . 4
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝜑) |
50 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ 𝑇 = 0) |
51 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ 0 < 𝑇) |
52 | | ioran 981 |
. . . . . . 7
⊢ (¬
(𝑇 = 0 ∨ 0 < 𝑇) ↔ (¬ 𝑇 = 0 ∧ ¬ 0 < 𝑇)) |
53 | 50, 51, 52 | sylanbrc 583 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ (𝑇 = 0 ∨ 0 < 𝑇)) |
54 | 49, 8 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝑇 ∈ ℝ) |
55 | | 0red 10978 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 0 ∈
ℝ) |
56 | 54, 55 | lttrid 11113 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → (𝑇 < 0 ↔ ¬ (𝑇 = 0 ∨ 0 < 𝑇))) |
57 | 53, 56 | mpbird 256 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝑇 < 0) |
58 | 54 | lt0neg1d 11544 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → (𝑇 < 0 ↔ 0 < -𝑇)) |
59 | 57, 58 | mpbid 231 |
. . . 4
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 0 < -𝑇) |
60 | 1, 8 | readdcld 11004 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + 𝑇) ∈ ℝ) |
61 | 60 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + 𝑇) ∈ ℂ) |
62 | 8 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ ℂ) |
63 | 61, 62 | negsubd 11338 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝑇) + -𝑇) = ((𝐴 + 𝑇) − 𝑇)) |
64 | 37, 62 | pncand 11333 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
65 | 63, 64 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 + 𝑇) + -𝑇) = 𝐴) |
66 | 3, 8 | readdcld 11004 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 + 𝑇) ∈ ℝ) |
67 | 66 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 + 𝑇) ∈ ℂ) |
68 | 67, 62 | negsubd 11338 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 + 𝑇) + -𝑇) = ((𝐵 + 𝑇) − 𝑇)) |
69 | 42, 62 | pncand 11333 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵) |
70 | 68, 69 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐵 + 𝑇) + -𝑇) = 𝐵) |
71 | 65, 70 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇)) = (𝐴[,]𝐵)) |
72 | 71 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,]𝐵) = (((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))) |
73 | 72 | itgeq1d 43498 |
. . . . . 6
⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹‘𝑥) d𝑥) |
74 | 73 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 0 < -𝑇) → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹‘𝑥) d𝑥) |
75 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝐴 ∈ ℝ) |
76 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝑇 ∈ ℝ) |
77 | 75, 76 | readdcld 11004 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → (𝐴 + 𝑇) ∈ ℝ) |
78 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝐵 ∈ ℝ) |
79 | 78, 76 | readdcld 11004 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → (𝐵 + 𝑇) ∈ ℝ) |
80 | | eqid 2738 |
. . . . . 6
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑m (0...𝑚))
∣ (((𝑝‘0) =
(𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
81 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝑀 ∈ ℕ) |
82 | 76 | renegcld 11402 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → -𝑇 ∈ ℝ) |
83 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → 0 < -𝑇) |
84 | 82, 83 | elrpd 12769 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → -𝑇 ∈
ℝ+) |
85 | 5 | fourierdlem2 43650 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
86 | 6, 85 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
87 | 12, 86 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
88 | 87 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
89 | | elmapi 8637 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
91 | 90 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
92 | 8 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑇 ∈ ℝ) |
93 | 91, 92 | readdcld 11004 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
94 | | fourierdlem92.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) |
95 | 93, 94 | fmptd 6988 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆:(0...𝑀)⟶ℝ) |
96 | | reex 10962 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
97 | 96 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
98 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢
(0...𝑀) ∈
V |
99 | 98 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑀) ∈ V) |
100 | 97, 99 | elmapd 8629 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 ∈ (ℝ ↑m
(0...𝑀)) ↔ 𝑆:(0...𝑀)⟶ℝ)) |
101 | 95, 100 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (ℝ ↑m
(0...𝑀))) |
102 | 94 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇))) |
103 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
104 | 103 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘0) + 𝑇)) |
105 | 104 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘0) + 𝑇)) |
106 | | 0zd 12331 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℤ) |
107 | 6 | nnzd 12425 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
108 | | 0le0 12074 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
0 |
109 | 108 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ 0) |
110 | | nnnn0 12240 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
111 | 110 | nn0ge0d 12296 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℕ → 0 ≤
𝑀) |
112 | 6, 111 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ 𝑀) |
113 | 106, 107,
106, 109, 112 | elfzd 13247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
114 | 90, 113 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
115 | 114, 8 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘0) + 𝑇) ∈ ℝ) |
116 | 102, 105,
113, 115 | fvmptd 6882 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘0) = ((𝑄‘0) + 𝑇)) |
117 | | simprll 776 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ (ℝ
↑m (0...𝑀))
∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) → (𝑄‘0) = 𝐴) |
118 | 87, 117 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
119 | 118 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑄‘0) + 𝑇) = (𝐴 + 𝑇)) |
120 | 116, 119 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘0) = (𝐴 + 𝑇)) |
121 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
122 | 121 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑀 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑀) + 𝑇)) |
123 | 122 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑀) + 𝑇)) |
124 | 6 | nnnn0d 12293 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
125 | | nn0uz 12620 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (ℤ≥‘0) |
126 | 124, 125 | eleqtrdi 2849 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
127 | | eluzfz2 13264 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
128 | 126, 127 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
129 | 90, 128 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
130 | 129, 8 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘𝑀) + 𝑇) ∈ ℝ) |
131 | 102, 123,
128, 130 | fvmptd 6882 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘𝑀) = ((𝑄‘𝑀) + 𝑇)) |
132 | | simprlr 777 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ (ℝ
↑m (0...𝑀))
∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) → (𝑄‘𝑀) = 𝐵) |
133 | 87, 132 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
134 | 133 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑄‘𝑀) + 𝑇) = (𝐵 + 𝑇)) |
135 | 131, 134 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘𝑀) = (𝐵 + 𝑇)) |
136 | 120, 135 | jca 512 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆‘𝑀) = (𝐵 + 𝑇))) |
137 | 90 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
138 | | elfzofz 13403 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
139 | 138 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
140 | 137, 139 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
141 | | fzofzp1 13484 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
142 | 141 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
143 | 137, 142 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
144 | 8 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℝ) |
145 | 87 | simprrd 771 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
146 | 145 | r19.21bi 3134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
147 | 140, 143,
144, 146 | ltadd1dd 11586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
148 | 140, 144 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
149 | 94 | fvmpt2 6886 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑄‘𝑖) + 𝑇) ∈ ℝ) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
150 | 139, 148,
149 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
151 | 94, 18 | eqtr4i 2769 |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇)) |
152 | 151 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))) |
153 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑖 + 1) → (𝑄‘𝑗) = (𝑄‘(𝑖 + 1))) |
154 | 153 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑖 + 1) → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
155 | 154 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
156 | 143, 144 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ) |
157 | 152, 155,
142, 156 | fvmptd 6882 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
158 | 147, 150,
157 | 3brtr4d 5106 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
159 | 158 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
160 | 101, 136,
159 | jca32 516 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆‘𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
161 | | fourierdlem92.h |
. . . . . . . . . . 11
⊢ 𝐻 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
162 | 161 | fourierdlem2 43650 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (𝑆 ∈ (𝐻‘𝑀) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆‘𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
163 | 6, 162 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∈ (𝐻‘𝑀) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆‘𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
164 | 160, 163 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (𝐻‘𝑀)) |
165 | 161 | fveq1i 6775 |
. . . . . . . 8
⊢ (𝐻‘𝑀) = ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) |
166 | 164, 165 | eleqtrdi 2849 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀)) |
167 | 166 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝑆 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀)) |
168 | 60 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ) |
169 | 66 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ) |
170 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) |
171 | | eliccre 43043 |
. . . . . . . . . . . 12
⊢ (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ) |
172 | 168, 169,
170, 171 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ) |
173 | 172 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ) |
174 | 62 | negcld 11319 |
. . . . . . . . . . 11
⊢ (𝜑 → -𝑇 ∈ ℂ) |
175 | 174 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → -𝑇 ∈ ℂ) |
176 | 173, 175 | addcld 10994 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ ℂ) |
177 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝜑) |
178 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ) |
179 | 3 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ) |
180 | 8 | renegcld 11402 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -𝑇 ∈ ℝ) |
181 | 180 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → -𝑇 ∈ ℝ) |
182 | 172, 181 | readdcld 11004 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ ℝ) |
183 | 63, 64 | eqtr2d 2779 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = ((𝐴 + 𝑇) + -𝑇)) |
184 | 183 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) + -𝑇)) |
185 | 168 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈
ℝ*) |
186 | 169 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈
ℝ*) |
187 | | iccgelb 13135 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥) |
188 | 185, 186,
170, 187 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥) |
189 | 168, 172,
181, 188 | leadd1dd 11589 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) + -𝑇) ≤ (𝑥 + -𝑇)) |
190 | 184, 189 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥 + -𝑇)) |
191 | | iccleub 13134 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇)) |
192 | 185, 186,
170, 191 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇)) |
193 | 172, 169,
181, 192 | leadd1dd 11589 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ≤ ((𝐵 + 𝑇) + -𝑇)) |
194 | 169 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℂ) |
195 | 62 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ) |
196 | 194, 195 | negsubd 11338 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) + -𝑇) = ((𝐵 + 𝑇) − 𝑇)) |
197 | 69 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵) |
198 | 196, 197 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) + -𝑇) = 𝐵) |
199 | 193, 198 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ≤ 𝐵) |
200 | 178, 179,
182, 190, 199 | eliccd 43042 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)) |
201 | 177, 200 | jca 512 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵))) |
202 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 + -𝑇) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵))) |
203 | 202 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑥 + -𝑇) → ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)))) |
204 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 + -𝑇) → (𝑦 + 𝑇) = ((𝑥 + -𝑇) + 𝑇)) |
205 | 204 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 + -𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥 + -𝑇) + 𝑇))) |
206 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 + -𝑇) → (𝐹‘𝑦) = (𝐹‘(𝑥 + -𝑇))) |
207 | 205, 206 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑥 + -𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦) ↔ (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇)))) |
208 | 203, 207 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥 + -𝑇) → (((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) ↔ ((𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇))))) |
209 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑦 ∈ (𝐴[,]𝐵))) |
210 | 209 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)))) |
211 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇)) |
212 | 211 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇))) |
213 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
214 | 212, 213 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦))) |
215 | 210, 214 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)))) |
216 | 215, 14 | chvarvv 2002 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) |
217 | 208, 216 | vtoclg 3505 |
. . . . . . . . 9
⊢ ((𝑥 + -𝑇) ∈ ℂ → ((𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇)))) |
218 | 176, 201,
217 | sylc 65 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇))) |
219 | 173, 195 | negsubd 11338 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) = (𝑥 − 𝑇)) |
220 | 219 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 + -𝑇) + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
221 | 173, 195 | npcand 11336 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
222 | 220, 221 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 + -𝑇) + 𝑇) = 𝑥) |
223 | 222 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘𝑥)) |
224 | 218, 223 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥 + -𝑇)) = (𝐹‘𝑥)) |
225 | 224 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 0 < -𝑇) ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥 + -𝑇)) = (𝐹‘𝑥)) |
226 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → (𝑆‘𝑗) = (𝑆‘𝑖)) |
227 | 226 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → ((𝑆‘𝑗) + -𝑇) = ((𝑆‘𝑖) + -𝑇)) |
228 | 227 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑆‘𝑖) + -𝑇)) |
229 | 19 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝐹:ℝ⟶ℂ) |
230 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ) |
231 | | ioossre 13140 |
. . . . . . . . . . 11
⊢ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ |
232 | 231 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ) |
233 | 230, 232 | feqresmpt 6838 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
234 | 150, 157 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) = (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) |
235 | 140, 143,
144 | iooshift 43060 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) |
236 | 234, 235 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) |
237 | 236 | mpteq1d 5169 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘𝑥))) |
238 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝜑) |
239 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑖 ∈ (0..^𝑀)) |
240 | 235 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) ↔ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)})) |
241 | 240 | biimpar 478 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) |
242 | 140 | rexrd 11025 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
243 | 242 | 3adant3 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) ∈
ℝ*) |
244 | 143 | rexrd 11025 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
245 | 244 | 3adant3 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
246 | | elioore 13109 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) → 𝑥 ∈ ℝ) |
247 | 246 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ) |
248 | 8 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑇 ∈ ℝ) |
249 | 247, 248 | resubcld 11403 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ℝ) |
250 | 249 | 3adant2 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ℝ) |
251 | 140 | recnd 11003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
252 | 62 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℂ) |
253 | 251, 252 | pncand 11333 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑇) − 𝑇) = (𝑄‘𝑖)) |
254 | 253 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
255 | 254 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
256 | 148 | 3adant3 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
257 | 247 | 3adant2 1130 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ) |
258 | 8 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑇 ∈ ℝ) |
259 | 148 | rexrd 11025 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈
ℝ*) |
260 | 259 | 3adant3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ∈
ℝ*) |
261 | 156 | rexrd 11025 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈
ℝ*) |
262 | 261 | 3adant3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈
ℝ*) |
263 | | simp3 1137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) |
264 | | ioogtlb 43033 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) < 𝑥) |
265 | 260, 262,
263, 264 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) < 𝑥) |
266 | 256, 257,
258, 265 | ltsub1dd 11587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘𝑖) + 𝑇) − 𝑇) < (𝑥 − 𝑇)) |
267 | 255, 266 | eqbrtrd 5096 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) < (𝑥 − 𝑇)) |
268 | 156 | 3adant3 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ) |
269 | | iooltub 43048 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
270 | 260, 262,
263, 269 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
271 | 257, 268,
258, 270 | ltsub1dd 11587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) < (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇)) |
272 | 143 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
273 | 272, 252 | pncand 11333 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1))) |
274 | 273 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1))) |
275 | 271, 274 | breqtrd 5100 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) < (𝑄‘(𝑖 + 1))) |
276 | 243, 245,
250, 267, 275 | eliood 43036 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
277 | 238, 239,
241, 276 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
278 | | fvres 6793 |
. . . . . . . . . . . 12
⊢ ((𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
279 | 277, 278 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
280 | 238, 241,
249 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥 − 𝑇) ∈ ℝ) |
281 | 1 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 ∈ ℝ) |
282 | 3 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐵 ∈ ℝ) |
283 | 64 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 = ((𝐴 + 𝑇) − 𝑇)) |
284 | 283 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇)) |
285 | 60 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ) |
286 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ) |
287 | 1 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
288 | 287 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈
ℝ*) |
289 | 3 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
290 | 289 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐵 ∈
ℝ*) |
291 | 5, 6, 12 | fourierdlem15 43663 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
292 | 291 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
293 | 292, 139 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (𝐴[,]𝐵)) |
294 | | iccgelb 13135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑄‘𝑖) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝑖)) |
295 | 288, 290,
293, 294 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ≤ (𝑄‘𝑖)) |
296 | 286, 140,
144, 295 | leadd1dd 11589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐴 + 𝑇) ≤ ((𝑄‘𝑖) + 𝑇)) |
297 | 296 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) ≤ ((𝑄‘𝑖) + 𝑇)) |
298 | 285, 256,
257, 297, 265 | lelttrd 11133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) < 𝑥) |
299 | 285, 257,
258, 298 | ltsub1dd 11587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥 − 𝑇)) |
300 | 284, 299 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 < (𝑥 − 𝑇)) |
301 | 281, 250,
300 | ltled 11123 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 ≤ (𝑥 − 𝑇)) |
302 | 143 | 3adant3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
303 | 292, 142 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵)) |
304 | | iccleub 13134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵) |
305 | 288, 290,
303, 304 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵) |
306 | 305 | 3adant3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ≤ 𝐵) |
307 | 250, 302,
282, 275, 306 | ltletrd 11135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) < 𝐵) |
308 | 250, 282,
307 | ltled 11123 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ≤ 𝐵) |
309 | 281, 282,
250, 301, 308 | eliccd 43042 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
310 | 238, 239,
241, 309 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
311 | 238, 310 | jca 512 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵))) |
312 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 − 𝑇) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵))) |
313 | 312 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 − 𝑇) → ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)))) |
314 | | oveq1 7282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 − 𝑇) → (𝑦 + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
315 | 314 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 − 𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥 − 𝑇) + 𝑇))) |
316 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 − 𝑇) → (𝐹‘𝑦) = (𝐹‘(𝑥 − 𝑇))) |
317 | 315, 316 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 − 𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦) ↔ (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇)))) |
318 | 313, 317 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 − 𝑇) → (((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) ↔ ((𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇))))) |
319 | 318, 216 | vtoclg 3505 |
. . . . . . . . . . . 12
⊢ ((𝑥 − 𝑇) ∈ ℝ → ((𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇)))) |
320 | 280, 311,
319 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
321 | 241, 246 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ℝ) |
322 | | recn 10961 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
323 | 322 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
324 | 62 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℂ) |
325 | 323, 324 | npcand 11336 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
326 | 325 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘𝑥)) |
327 | 238, 321,
326 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘𝑥)) |
328 | 279, 320,
327 | 3eqtr2rd 2785 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹‘𝑥) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
329 | 328 | mpteq2dva 5174 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
330 | 233, 237,
329 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
331 | | ioosscn 13141 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
332 | 331 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
333 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇))) |
334 | 333 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇))) |
335 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇)) |
336 | 335 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇))) |
337 | 336 | cbvrexvw 3384 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)) |
338 | 334, 337 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇))) |
339 | 338 | cbvrabv 3426 |
. . . . . . . . . 10
⊢ {𝑤 ∈ ℂ ∣
∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} |
340 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
341 | 332, 252,
339, 21, 340 | cncfshift 43415 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ)) |
342 | 236 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
343 | 342 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ) = (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
344 | 341, 343 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) ∈ (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
345 | 330, 344 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) ∈ (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
346 | 345 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) ∈ (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
347 | | ffdm 6630 |
. . . . . . . . . . . 12
⊢ (𝐹:ℝ⟶ℂ →
(𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
348 | 19, 347 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
349 | 348 | simpld 495 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
350 | 349 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:dom 𝐹⟶ℂ) |
351 | | ioossre 13140 |
. . . . . . . . . 10
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
352 | | fdm 6609 |
. . . . . . . . . . 11
⊢ (𝐹:ℝ⟶ℂ →
dom 𝐹 =
ℝ) |
353 | 230, 352 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom 𝐹 = ℝ) |
354 | 351, 353 | sseqtrrid 3974 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
355 | 339 | eqcomi 2747 |
. . . . . . . . 9
⊢ {𝑥 ∈ ℂ ∣
∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} |
356 | 232, 342,
353 | 3sstr4d 3968 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹) |
357 | 339, 356 | eqsstrrid 3970 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} ⊆ dom 𝐹) |
358 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑) |
359 | 358, 287 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈
ℝ*) |
360 | 358, 289 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈
ℝ*) |
361 | 358, 291 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
362 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
363 | | ioossicc 13165 |
. . . . . . . . . . . . 13
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
364 | 363 | sseli 3917 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑧 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
365 | 364 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
366 | 359, 360,
361, 362, 365 | fourierdlem1 43649 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ (𝐴[,]𝐵)) |
367 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑧 ∈ (𝐴[,]𝐵))) |
368 | 367 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)))) |
369 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥 + 𝑇) = (𝑧 + 𝑇)) |
370 | 369 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑧 + 𝑇))) |
371 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
372 | 370, 371 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧))) |
373 | 368, 372 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)))) |
374 | 373, 14 | chvarvv 2002 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)) |
375 | 358, 366,
374 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)) |
376 | 350, 332,
354, 252, 355, 357, 375, 23 | limcperiod 43169 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) limℂ ((𝑄‘𝑖) + 𝑇))) |
377 | 355, 342 | eqtrid 2790 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} = ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
378 | 377 | reseq2d 5891 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) = (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))) |
379 | 150 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) = (𝑆‘𝑖)) |
380 | 378, 379 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) limℂ ((𝑄‘𝑖) + 𝑇)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘𝑖))) |
381 | 376, 380 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘𝑖))) |
382 | 381 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘𝑖))) |
383 | 350, 332,
354, 252, 355, 357, 375, 25 | limcperiod 43169 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) limℂ ((𝑄‘(𝑖 + 1)) + 𝑇))) |
384 | 157 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) = (𝑆‘(𝑖 + 1))) |
385 | 378, 384 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) limℂ ((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘(𝑖 + 1)))) |
386 | 383, 385 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘(𝑖 + 1)))) |
387 | 386 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘(𝑖 + 1)))) |
388 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑆‘𝑖) ↔ 𝑥 = (𝑆‘𝑖))) |
389 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑆‘(𝑖 + 1)) ↔ 𝑥 = (𝑆‘(𝑖 + 1)))) |
390 | 389, 29 | ifbieq2d 4485 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦)) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
391 | 388, 390 | ifbieq2d 4485 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → if(𝑦 = (𝑆‘𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))) = if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
392 | 391 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑦 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆‘𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦)))) = (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
393 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆‘𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))))‘(𝑥 − -𝑇))) = (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆‘𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))))‘(𝑥 − -𝑇))) |
394 | 77, 79, 80, 81, 84, 167, 225, 228, 229, 346, 382, 387, 392, 393 | fourierdlem81 43728 |
. . . . 5
⊢ ((𝜑 ∧ 0 < -𝑇) → ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹‘𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥) |
395 | 74, 394 | eqtr2d 2779 |
. . . 4
⊢ ((𝜑 ∧ 0 < -𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
396 | 49, 59, 395 | syl2anc 584 |
. . 3
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
397 | 48, 396 | pm2.61dan 810 |
. 2
⊢ ((𝜑 ∧ ¬ 0 < 𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
398 | 34, 397 | pm2.61dan 810 |
1
⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |