Step | Hyp | Ref
| Expression |
1 | | fourierdlem92.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | 1 | adantr 473 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝐴 ∈ ℝ) |
3 | | fourierdlem92.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | adantr 473 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝐵 ∈ ℝ) |
5 | | fourierdlem92.p |
. . 3
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
6 | | fourierdlem92.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
7 | 6 | adantr 473 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝑀 ∈ ℕ) |
8 | | fourierdlem92.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ ℝ) |
9 | 8 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝑇 ∈ ℝ) |
10 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑇) → 0 < 𝑇) |
11 | 9, 10 | elrpd 12248 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝑇 ∈
ℝ+) |
12 | | fourierdlem92.q |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
13 | 12 | adantr 473 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝑄 ∈ (𝑃‘𝑀)) |
14 | | fourierdlem92.fper |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
15 | 14 | adantlr 702 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑇) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
16 | | fveq2 6501 |
. . . . 5
⊢ (𝑗 = 𝑖 → (𝑄‘𝑗) = (𝑄‘𝑖)) |
17 | 16 | oveq1d 6993 |
. . . 4
⊢ (𝑗 = 𝑖 → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘𝑖) + 𝑇)) |
18 | 17 | cbvmptv 5029 |
. . 3
⊢ (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) |
19 | | fourierdlem92.f |
. . . 4
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
20 | 19 | adantr 473 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑇) → 𝐹:ℝ⟶ℂ) |
21 | | fourierdlem92.cncf |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
22 | 21 | adantlr 702 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
23 | | fourierdlem92.r |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
24 | 23 | adantlr 702 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
25 | | fourierdlem92.l |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
26 | 25 | adantlr 702 |
. . 3
⊢ (((𝜑 ∧ 0 < 𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
27 | | eqeq1 2782 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑄‘𝑖) ↔ 𝑥 = (𝑄‘𝑖))) |
28 | | eqeq1 2782 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑄‘(𝑖 + 1)) ↔ 𝑥 = (𝑄‘(𝑖 + 1)))) |
29 | | fveq2 6501 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
30 | 28, 29 | ifbieq2d 4376 |
. . . . 5
⊢ (𝑦 = 𝑥 → if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
31 | 27, 30 | ifbieq2d 4376 |
. . . 4
⊢ (𝑦 = 𝑥 → if(𝑦 = (𝑄‘𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))) = if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
32 | 31 | cbvmptv 5029 |
. . 3
⊢ (𝑦 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄‘𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦)))) = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
33 | | eqid 2778 |
. . 3
⊢ (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄‘𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))))‘(𝑥 − 𝑇))) = (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑦 = (𝑄‘𝑖), 𝑅, if(𝑦 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))))‘(𝑥 − 𝑇))) |
34 | 2, 4, 5, 7, 11, 13, 15, 18, 20, 22, 24, 26, 32, 33 | fourierdlem81 41904 |
. 2
⊢ ((𝜑 ∧ 0 < 𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
35 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 = 0) → 𝑇 = 0) |
36 | 35 | oveq2d 6994 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐴 + 𝑇) = (𝐴 + 0)) |
37 | 1 | recnd 10470 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
38 | 37 | adantr 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 = 0) → 𝐴 ∈ ℂ) |
39 | 38 | addid1d 10642 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐴 + 0) = 𝐴) |
40 | 36, 39 | eqtrd 2814 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐴 + 𝑇) = 𝐴) |
41 | 35 | oveq2d 6994 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐵 + 𝑇) = (𝐵 + 0)) |
42 | 3 | recnd 10470 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℂ) |
43 | 42 | adantr 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑇 = 0) → 𝐵 ∈ ℂ) |
44 | 43 | addid1d 10642 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐵 + 0) = 𝐵) |
45 | 41, 44 | eqtrd 2814 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑇 = 0) → (𝐵 + 𝑇) = 𝐵) |
46 | 40, 45 | oveq12d 6996 |
. . . . 5
⊢ ((𝜑 ∧ 𝑇 = 0) → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = (𝐴[,]𝐵)) |
47 | 46 | itgeq1d 41673 |
. . . 4
⊢ ((𝜑 ∧ 𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
48 | 47 | adantlr 702 |
. . 3
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ 𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
49 | | simpll 754 |
. . . 4
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝜑) |
50 | | simpr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ 𝑇 = 0) |
51 | | simplr 756 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ 0 < 𝑇) |
52 | | ioran 966 |
. . . . . . 7
⊢ (¬
(𝑇 = 0 ∨ 0 < 𝑇) ↔ (¬ 𝑇 = 0 ∧ ¬ 0 < 𝑇)) |
53 | 50, 51, 52 | sylanbrc 575 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ¬ (𝑇 = 0 ∨ 0 < 𝑇)) |
54 | 49, 8 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝑇 ∈ ℝ) |
55 | | 0red 10445 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 0 ∈
ℝ) |
56 | 54, 55 | lttrid 10580 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → (𝑇 < 0 ↔ ¬ (𝑇 = 0 ∨ 0 < 𝑇))) |
57 | 53, 56 | mpbird 249 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 𝑇 < 0) |
58 | 54 | lt0neg1d 11012 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → (𝑇 < 0 ↔ 0 < -𝑇)) |
59 | 57, 58 | mpbid 224 |
. . . 4
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → 0 < -𝑇) |
60 | 1, 8 | readdcld 10471 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + 𝑇) ∈ ℝ) |
61 | 60 | recnd 10470 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + 𝑇) ∈ ℂ) |
62 | 8 | recnd 10470 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ ℂ) |
63 | 61, 62 | negsubd 10806 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝑇) + -𝑇) = ((𝐴 + 𝑇) − 𝑇)) |
64 | 37, 62 | pncand 10801 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
65 | 63, 64 | eqtrd 2814 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 + 𝑇) + -𝑇) = 𝐴) |
66 | 3, 8 | readdcld 10471 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 + 𝑇) ∈ ℝ) |
67 | 66 | recnd 10470 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 + 𝑇) ∈ ℂ) |
68 | 67, 62 | negsubd 10806 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 + 𝑇) + -𝑇) = ((𝐵 + 𝑇) − 𝑇)) |
69 | 42, 62 | pncand 10801 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵) |
70 | 68, 69 | eqtrd 2814 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐵 + 𝑇) + -𝑇) = 𝐵) |
71 | 65, 70 | oveq12d 6996 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇)) = (𝐴[,]𝐵)) |
72 | 71 | eqcomd 2784 |
. . . . . . 7
⊢ (𝜑 → (𝐴[,]𝐵) = (((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))) |
73 | 72 | itgeq1d 41673 |
. . . . . 6
⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹‘𝑥) d𝑥) |
74 | 73 | adantr 473 |
. . . . 5
⊢ ((𝜑 ∧ 0 < -𝑇) → ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥 = ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹‘𝑥) d𝑥) |
75 | 1 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝐴 ∈ ℝ) |
76 | 8 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝑇 ∈ ℝ) |
77 | 75, 76 | readdcld 10471 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → (𝐴 + 𝑇) ∈ ℝ) |
78 | 3 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝐵 ∈ ℝ) |
79 | 78, 76 | readdcld 10471 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → (𝐵 + 𝑇) ∈ ℝ) |
80 | | eqid 2778 |
. . . . . 6
⊢ (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ
↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
81 | 6 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝑀 ∈ ℕ) |
82 | 76 | renegcld 10870 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → -𝑇 ∈ ℝ) |
83 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < -𝑇) → 0 < -𝑇) |
84 | 82, 83 | elrpd 12248 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → -𝑇 ∈
ℝ+) |
85 | 5 | fourierdlem2 41826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
86 | 6, 85 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
87 | 12, 86 | mpbid 224 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
88 | 87 | simpld 487 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑𝑚
(0...𝑀))) |
89 | | elmapi 8230 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 ∈ (ℝ
↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
91 | 90 | ffvelrnda 6678 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
92 | 8 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑇 ∈ ℝ) |
93 | 91, 92 | readdcld 10471 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
94 | | fourierdlem92.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) |
95 | 93, 94 | fmptd 6703 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆:(0...𝑀)⟶ℝ) |
96 | | reex 10428 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
97 | 96 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
98 | | ovex 7010 |
. . . . . . . . . . . . 13
⊢
(0...𝑀) ∈
V |
99 | 98 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑀) ∈ V) |
100 | 97, 99 | elmapd 8222 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 ∈ (ℝ ↑𝑚
(0...𝑀)) ↔ 𝑆:(0...𝑀)⟶ℝ)) |
101 | 95, 100 | mpbird 249 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (ℝ ↑𝑚
(0...𝑀))) |
102 | 94 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇))) |
103 | | fveq2 6501 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
104 | 103 | oveq1d 6993 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘0) + 𝑇)) |
105 | 104 | adantl 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘0) + 𝑇)) |
106 | | 0zd 11808 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℤ) |
107 | 6 | nnzd 11902 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℤ) |
108 | 106, 107,
106 | 3jca 1108 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 0
∈ ℤ)) |
109 | | 0le0 11551 |
. . . . . . . . . . . . . . . 16
⊢ 0 ≤
0 |
110 | 109 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ 0) |
111 | | nnnn0 11718 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
112 | 111 | nn0ge0d 11773 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → 0 ≤
𝑀) |
113 | 6, 112 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ 𝑀) |
114 | 108, 110,
113 | jca32 508 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 0
∈ ℤ) ∧ (0 ≤ 0 ∧ 0 ≤ 𝑀))) |
115 | | elfz2 12718 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(0...𝑀) ↔ ((0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 ∈ ℤ) ∧ (0 ≤ 0 ∧ 0 ≤ 𝑀))) |
116 | 114, 115 | sylibr 226 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
117 | 90, 116 | ffvelrnd 6679 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
118 | 117, 8 | readdcld 10471 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘0) + 𝑇) ∈ ℝ) |
119 | 102, 105,
116, 118 | fvmptd 6603 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘0) = ((𝑄‘0) + 𝑇)) |
120 | | simprll 766 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ (ℝ
↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) → (𝑄‘0) = 𝐴) |
121 | 87, 120 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
122 | 121 | oveq1d 6993 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑄‘0) + 𝑇) = (𝐴 + 𝑇)) |
123 | 119, 122 | eqtrd 2814 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘0) = (𝐴 + 𝑇)) |
124 | | fveq2 6501 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
125 | 124 | oveq1d 6993 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑀 → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑀) + 𝑇)) |
126 | 125 | adantl 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑄‘𝑖) + 𝑇) = ((𝑄‘𝑀) + 𝑇)) |
127 | 6 | nnnn0d 11770 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
128 | | nn0uz 12097 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (ℤ≥‘0) |
129 | 127, 128 | syl6eleq 2876 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
130 | | eluzfz2 12734 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
131 | 129, 130 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
132 | 90, 131 | ffvelrnd 6679 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
133 | 132, 8 | readdcld 10471 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘𝑀) + 𝑇) ∈ ℝ) |
134 | 102, 126,
131, 133 | fvmptd 6603 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘𝑀) = ((𝑄‘𝑀) + 𝑇)) |
135 | | simprlr 767 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ (ℝ
↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) → (𝑄‘𝑀) = 𝐵) |
136 | 87, 135 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
137 | 136 | oveq1d 6993 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑄‘𝑀) + 𝑇) = (𝐵 + 𝑇)) |
138 | 134, 137 | eqtrd 2814 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘𝑀) = (𝐵 + 𝑇)) |
139 | 123, 138 | jca 504 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆‘𝑀) = (𝐵 + 𝑇))) |
140 | 90 | adantr 473 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
141 | | elfzofz 12872 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
142 | 141 | adantl 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
143 | 140, 142 | ffvelrnd 6679 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
144 | | fzofzp1 12952 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
145 | 144 | adantl 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
146 | 140, 145 | ffvelrnd 6679 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
147 | 8 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℝ) |
148 | 87 | simprrd 761 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
149 | 148 | r19.21bi 3158 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
150 | 143, 146,
147, 149 | ltadd1dd 11054 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
151 | 143, 147 | readdcld 10471 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
152 | 94 | fvmpt2 6607 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑄‘𝑖) + 𝑇) ∈ ℝ) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
153 | 142, 151,
152 | syl2anc 576 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) = ((𝑄‘𝑖) + 𝑇)) |
154 | 94, 18 | eqtr4i 2805 |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇)) |
155 | 154 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) + 𝑇))) |
156 | | fveq2 6501 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑖 + 1) → (𝑄‘𝑗) = (𝑄‘(𝑖 + 1))) |
157 | 156 | oveq1d 6993 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑖 + 1) → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
158 | 157 | adantl 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄‘𝑗) + 𝑇) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
159 | 146, 147 | readdcld 10471 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ) |
160 | 155, 158,
145, 159 | fvmptd 6603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) + 𝑇)) |
161 | 150, 153,
160 | 3brtr4d 4962 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
162 | 161 | ralrimiva 3132 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
163 | 101, 139,
162 | jca32 508 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆‘𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
164 | | fourierdlem92.h |
. . . . . . . . . . 11
⊢ 𝐻 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
165 | 164 | fourierdlem2 41826 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → (𝑆 ∈ (𝐻‘𝑀) ↔ (𝑆 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆‘𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
166 | 6, 165 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∈ (𝐻‘𝑀) ↔ (𝑆 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑆‘0) = (𝐴 + 𝑇) ∧ (𝑆‘𝑀) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
167 | 163, 166 | mpbird 249 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (𝐻‘𝑀)) |
168 | 164 | fveq1i 6502 |
. . . . . . . 8
⊢ (𝐻‘𝑀) = ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) |
169 | 167, 168 | syl6eleq 2876 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀)) |
170 | 169 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝑆 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀)) |
171 | 60 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ) |
172 | 66 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ) |
173 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) |
174 | | eliccre 41213 |
. . . . . . . . . . . 12
⊢ (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ) |
175 | 171, 172,
173, 174 | syl3anc 1351 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ) |
176 | 175 | recnd 10470 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ) |
177 | 62 | negcld 10787 |
. . . . . . . . . . 11
⊢ (𝜑 → -𝑇 ∈ ℂ) |
178 | 177 | adantr 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → -𝑇 ∈ ℂ) |
179 | 176, 178 | addcld 10461 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ ℂ) |
180 | | simpl 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝜑) |
181 | 1 | adantr 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ) |
182 | 3 | adantr 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ) |
183 | 8 | renegcld 10870 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -𝑇 ∈ ℝ) |
184 | 183 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → -𝑇 ∈ ℝ) |
185 | 175, 184 | readdcld 10471 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ ℝ) |
186 | 63, 64 | eqtr2d 2815 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = ((𝐴 + 𝑇) + -𝑇)) |
187 | 186 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) + -𝑇)) |
188 | 171 | rexrd 10492 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈
ℝ*) |
189 | 172 | rexrd 10492 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈
ℝ*) |
190 | | iccgelb 12612 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥) |
191 | 188, 189,
173, 190 | syl3anc 1351 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥) |
192 | 171, 175,
184, 191 | leadd1dd 11057 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) + -𝑇) ≤ (𝑥 + -𝑇)) |
193 | 187, 192 | eqbrtrd 4952 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥 + -𝑇)) |
194 | | iccleub 12611 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇)) |
195 | 188, 189,
173, 194 | syl3anc 1351 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇)) |
196 | 175, 172,
184, 195 | leadd1dd 11057 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ≤ ((𝐵 + 𝑇) + -𝑇)) |
197 | 172 | recnd 10470 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℂ) |
198 | 62 | adantr 473 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ) |
199 | 197, 198 | negsubd 10806 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) + -𝑇) = ((𝐵 + 𝑇) − 𝑇)) |
200 | 69 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵) |
201 | 199, 200 | eqtrd 2814 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) + -𝑇) = 𝐵) |
202 | 196, 201 | breqtrd 4956 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ≤ 𝐵) |
203 | 181, 182,
185, 193, 202 | eliccd 41211 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)) |
204 | 180, 203 | jca 504 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵))) |
205 | | eleq1 2853 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 + -𝑇) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵))) |
206 | 205 | anbi2d 619 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑥 + -𝑇) → ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)))) |
207 | | oveq1 6985 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 + -𝑇) → (𝑦 + 𝑇) = ((𝑥 + -𝑇) + 𝑇)) |
208 | 207 | fveq2d 6505 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 + -𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥 + -𝑇) + 𝑇))) |
209 | | fveq2 6501 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 + -𝑇) → (𝐹‘𝑦) = (𝐹‘(𝑥 + -𝑇))) |
210 | 208, 209 | eqeq12d 2793 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑥 + -𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦) ↔ (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇)))) |
211 | 206, 210 | imbi12d 337 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥 + -𝑇) → (((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) ↔ ((𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇))))) |
212 | | eleq1 2853 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑦 ∈ (𝐴[,]𝐵))) |
213 | 212 | anbi2d 619 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)))) |
214 | | oveq1 6985 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇)) |
215 | 214 | fveq2d 6505 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇))) |
216 | | fveq2 6501 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
217 | 215, 216 | eqeq12d 2793 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦))) |
218 | 213, 217 | imbi12d 337 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)))) |
219 | 218, 14 | chvarv 2327 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) |
220 | 211, 219 | vtoclg 3486 |
. . . . . . . . 9
⊢ ((𝑥 + -𝑇) ∈ ℂ → ((𝜑 ∧ (𝑥 + -𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇)))) |
221 | 179, 204,
220 | sylc 65 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘(𝑥 + -𝑇))) |
222 | 176, 198 | negsubd 10806 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 + -𝑇) = (𝑥 − 𝑇)) |
223 | 222 | oveq1d 6993 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 + -𝑇) + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
224 | 176, 198 | npcand 10804 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
225 | 223, 224 | eqtrd 2814 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 + -𝑇) + 𝑇) = 𝑥) |
226 | 225 | fveq2d 6505 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘((𝑥 + -𝑇) + 𝑇)) = (𝐹‘𝑥)) |
227 | 221, 226 | eqtr3d 2816 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥 + -𝑇)) = (𝐹‘𝑥)) |
228 | 227 | adantlr 702 |
. . . . . 6
⊢ (((𝜑 ∧ 0 < -𝑇) ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥 + -𝑇)) = (𝐹‘𝑥)) |
229 | | fveq2 6501 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → (𝑆‘𝑗) = (𝑆‘𝑖)) |
230 | 229 | oveq1d 6993 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → ((𝑆‘𝑗) + -𝑇) = ((𝑆‘𝑖) + -𝑇)) |
231 | 230 | cbvmptv 5029 |
. . . . . 6
⊢ (𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑆‘𝑖) + -𝑇)) |
232 | 19 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < -𝑇) → 𝐹:ℝ⟶ℂ) |
233 | 19 | adantr 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ) |
234 | | ioossre 12617 |
. . . . . . . . . . 11
⊢ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ |
235 | 234 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ⊆ ℝ) |
236 | 233, 235 | feqresmpt 6565 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
237 | 153, 160 | oveq12d 6996 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) = (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) |
238 | 143, 146,
147 | iooshift 41230 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) |
239 | 237, 238 | eqtrd 2814 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) |
240 | 239 | mpteq1d 5017 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘𝑥))) |
241 | | simpll 754 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝜑) |
242 | | simplr 756 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑖 ∈ (0..^𝑀)) |
243 | 238 | eleq2d 2851 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) ↔ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)})) |
244 | 243 | biimpar 470 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) |
245 | 143 | rexrd 10492 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
246 | 245 | 3adant3 1112 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) ∈
ℝ*) |
247 | 146 | rexrd 10492 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
248 | 247 | 3adant3 1112 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
249 | | elioore 12587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇)) → 𝑥 ∈ ℝ) |
250 | 249 | adantl 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ) |
251 | 8 | adantr 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑇 ∈ ℝ) |
252 | 250, 251 | resubcld 10871 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ℝ) |
253 | 252 | 3adant2 1111 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ℝ) |
254 | 143 | recnd 10470 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
255 | 62 | adantr 473 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑇 ∈ ℂ) |
256 | 254, 255 | pncand 10801 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + 𝑇) − 𝑇) = (𝑄‘𝑖)) |
257 | 256 | eqcomd 2784 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
258 | 257 | 3adant3 1112 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) = (((𝑄‘𝑖) + 𝑇) − 𝑇)) |
259 | 151 | 3adant3 1112 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ∈ ℝ) |
260 | 250 | 3adant2 1111 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ ℝ) |
261 | 8 | 3ad2ant1 1113 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑇 ∈ ℝ) |
262 | 151 | rexrd 10492 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) ∈
ℝ*) |
263 | 262 | 3adant3 1112 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) ∈
ℝ*) |
264 | 159 | rexrd 10492 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈
ℝ*) |
265 | 264 | 3adant3 1112 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈
ℝ*) |
266 | | simp3 1118 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) |
267 | | ioogtlb 41202 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) < 𝑥) |
268 | 263, 265,
266, 267 | syl3anc 1351 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘𝑖) + 𝑇) < 𝑥) |
269 | 259, 260,
261, 268 | ltsub1dd 11055 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘𝑖) + 𝑇) − 𝑇) < (𝑥 − 𝑇)) |
270 | 258, 269 | eqbrtrd 4952 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘𝑖) < (𝑥 − 𝑇)) |
271 | 159 | 3adant3 1112 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ) |
272 | | iooltub 41218 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑄‘𝑖) + 𝑇) ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
273 | 263, 265,
266, 272 | syl3anc 1351 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝑥 < ((𝑄‘(𝑖 + 1)) + 𝑇)) |
274 | 260, 271,
261, 273 | ltsub1dd 11055 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) < (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇)) |
275 | 146 | recnd 10470 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
276 | 275, 255 | pncand 10801 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1))) |
277 | 276 | 3adant3 1112 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (((𝑄‘(𝑖 + 1)) + 𝑇) − 𝑇) = (𝑄‘(𝑖 + 1))) |
278 | 274, 277 | breqtrd 4956 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) < (𝑄‘(𝑖 + 1))) |
279 | 246, 248,
253, 270, 278 | eliood 41205 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
280 | 241, 242,
244, 279 | syl3anc 1351 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
281 | | fvres 6520 |
. . . . . . . . . . . 12
⊢ ((𝑥 − 𝑇) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
282 | 280, 281 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
283 | 241, 244,
252 | syl2anc 576 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥 − 𝑇) ∈ ℝ) |
284 | 1 | 3ad2ant1 1113 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 ∈ ℝ) |
285 | 3 | 3ad2ant1 1113 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐵 ∈ ℝ) |
286 | 64 | eqcomd 2784 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 = ((𝐴 + 𝑇) − 𝑇)) |
287 | 286 | 3ad2ant1 1113 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇)) |
288 | 60 | 3ad2ant1 1113 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ) |
289 | 1 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ) |
290 | 1 | rexrd 10492 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
291 | 290 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈
ℝ*) |
292 | 3 | rexrd 10492 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
293 | 292 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐵 ∈
ℝ*) |
294 | 5, 6, 12 | fourierdlem15 41839 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
295 | 294 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
296 | 295, 142 | ffvelrnd 6679 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (𝐴[,]𝐵)) |
297 | | iccgelb 12612 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑄‘𝑖) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝑖)) |
298 | 291, 293,
296, 297 | syl3anc 1351 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ≤ (𝑄‘𝑖)) |
299 | 289, 143,
147, 298 | leadd1dd 11057 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐴 + 𝑇) ≤ ((𝑄‘𝑖) + 𝑇)) |
300 | 299 | 3adant3 1112 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) ≤ ((𝑄‘𝑖) + 𝑇)) |
301 | 288, 259,
260, 300, 268 | lelttrd 10600 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝐴 + 𝑇) < 𝑥) |
302 | 288, 260,
261, 301 | ltsub1dd 11055 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥 − 𝑇)) |
303 | 287, 302 | eqbrtrd 4952 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 < (𝑥 − 𝑇)) |
304 | 284, 253,
303 | ltled 10590 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → 𝐴 ≤ (𝑥 − 𝑇)) |
305 | 146 | 3adant3 1112 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
306 | 295, 145 | ffvelrnd 6679 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵)) |
307 | | iccleub 12611 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵) |
308 | 291, 293,
306, 307 | syl3anc 1351 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵) |
309 | 308 | 3adant3 1112 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑄‘(𝑖 + 1)) ≤ 𝐵) |
310 | 253, 305,
285, 278, 309 | ltletrd 10602 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) < 𝐵) |
311 | 253, 285,
310 | ltled 10590 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ≤ 𝐵) |
312 | 284, 285,
253, 304, 311 | eliccd 41211 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ 𝑥 ∈ (((𝑄‘𝑖) + 𝑇)(,)((𝑄‘(𝑖 + 1)) + 𝑇))) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
313 | 241, 242,
244, 312 | syl3anc 1351 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
314 | 241, 313 | jca 504 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵))) |
315 | | eleq1 2853 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 − 𝑇) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵))) |
316 | 315 | anbi2d 619 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 − 𝑇) → ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)))) |
317 | | oveq1 6985 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑥 − 𝑇) → (𝑦 + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
318 | 317 | fveq2d 6505 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 − 𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥 − 𝑇) + 𝑇))) |
319 | | fveq2 6501 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑥 − 𝑇) → (𝐹‘𝑦) = (𝐹‘(𝑥 − 𝑇))) |
320 | 318, 319 | eqeq12d 2793 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 − 𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦) ↔ (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇)))) |
321 | 316, 320 | imbi12d 337 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 − 𝑇) → (((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) ↔ ((𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇))))) |
322 | 321, 219 | vtoclg 3486 |
. . . . . . . . . . . 12
⊢ ((𝑥 − 𝑇) ∈ ℝ → ((𝜑 ∧ (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇)))) |
323 | 283, 314,
322 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘(𝑥 − 𝑇))) |
324 | 244, 249 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ℝ) |
325 | | recn 10427 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
326 | 325 | adantl 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
327 | 62 | adantr 473 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℂ) |
328 | 326, 327 | npcand 10804 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
329 | 328 | fveq2d 6505 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘𝑥)) |
330 | 241, 324,
329 | syl2anc 576 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹‘((𝑥 − 𝑇) + 𝑇)) = (𝐹‘𝑥)) |
331 | 282, 323,
330 | 3eqtr2rd 2821 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}) → (𝐹‘𝑥) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
332 | 331 | mpteq2dva 5023 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘𝑥)) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
333 | 236, 240,
332 | 3eqtrd 2818 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇)))) |
334 | | ioosscn 41201 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
335 | 334 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
336 | | eqeq1 2782 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇))) |
337 | 336 | rexbidv 3242 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇))) |
338 | | oveq1 6985 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇)) |
339 | 338 | eqeq2d 2788 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇))) |
340 | 339 | cbvrexv 3384 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)) |
341 | 337, 340 | syl6bb 279 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇))) |
342 | 341 | cbvrabv 3412 |
. . . . . . . . . 10
⊢ {𝑤 ∈ ℂ ∣
∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} |
343 | | eqid 2778 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) |
344 | 335, 255,
342, 21, 343 | cncfshift 41588 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ)) |
345 | 239 | eqcomd 2784 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} = ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
346 | 345 | oveq1d 6993 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)}–cn→ℂ) = (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
347 | 344, 346 | eleqtrd 2868 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑥 − 𝑇))) ∈ (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
348 | 333, 347 | eqeltrd 2866 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) ∈ (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
349 | 348 | adantlr 702 |
. . . . . 6
⊢ (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) ∈ (((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))–cn→ℂ)) |
350 | | ffdm 6367 |
. . . . . . . . . . . 12
⊢ (𝐹:ℝ⟶ℂ →
(𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
351 | 19, 350 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
352 | 351 | simpld 487 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
353 | 352 | adantr 473 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:dom 𝐹⟶ℂ) |
354 | | ioossre 12617 |
. . . . . . . . . 10
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
355 | | fdm 6354 |
. . . . . . . . . . 11
⊢ (𝐹:ℝ⟶ℂ →
dom 𝐹 =
ℝ) |
356 | 233, 355 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom 𝐹 = ℝ) |
357 | 354, 356 | syl5sseqr 3912 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
358 | 342 | eqcomi 2787 |
. . . . . . . . 9
⊢ {𝑥 ∈ ℂ ∣
∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} |
359 | 235, 345,
356 | 3sstr4d 3906 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹) |
360 | 342, 359 | syl5eqssr 3908 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} ⊆ dom 𝐹) |
361 | | simpll 754 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑) |
362 | 361, 290 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈
ℝ*) |
363 | 361, 292 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈
ℝ*) |
364 | 361, 294 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
365 | | simplr 756 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
366 | | ioossicc 12641 |
. . . . . . . . . . . . 13
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
367 | 366 | sseli 3856 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑧 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
368 | 367 | adantl 474 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
369 | 362, 363,
364, 365, 368 | fourierdlem1 41825 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ (𝐴[,]𝐵)) |
370 | | eleq1 2853 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑧 ∈ (𝐴[,]𝐵))) |
371 | 370 | anbi2d 619 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)))) |
372 | | oveq1 6985 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥 + 𝑇) = (𝑧 + 𝑇)) |
373 | 372 | fveq2d 6505 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑧 + 𝑇))) |
374 | | fveq2 6501 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
375 | 373, 374 | eqeq12d 2793 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧))) |
376 | 371, 375 | imbi12d 337 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)))) |
377 | 376, 14 | chvarv 2327 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)) |
378 | 361, 369,
377 | syl2anc 576 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑧 + 𝑇)) = (𝐹‘𝑧)) |
379 | 353, 335,
357, 255, 358, 360, 378, 23 | limcperiod 41341 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) limℂ ((𝑄‘𝑖) + 𝑇))) |
380 | 358, 345 | syl5eq 2826 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)} = ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) |
381 | 380 | reseq2d 5696 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) = (𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1))))) |
382 | 153 | eqcomd 2784 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + 𝑇) = (𝑆‘𝑖)) |
383 | 381, 382 | oveq12d 6996 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) limℂ ((𝑄‘𝑖) + 𝑇)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘𝑖))) |
384 | 379, 383 | eleqtrd 2868 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘𝑖))) |
385 | 384 | adantlr 702 |
. . . . . 6
⊢ (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘𝑖))) |
386 | 353, 335,
357, 255, 358, 360, 378, 25 | limcperiod 41341 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) limℂ ((𝑄‘(𝑖 + 1)) + 𝑇))) |
387 | 160 | eqcomd 2784 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑇) = (𝑆‘(𝑖 + 1))) |
388 | 381, 387 | oveq12d 6996 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 = (𝑦 + 𝑇)}) limℂ ((𝑄‘(𝑖 + 1)) + 𝑇)) = ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘(𝑖 + 1)))) |
389 | 386, 388 | eleqtrd 2868 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘(𝑖 + 1)))) |
390 | 389 | adantlr 702 |
. . . . . 6
⊢ (((𝜑 ∧ 0 < -𝑇) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑆‘𝑖)(,)(𝑆‘(𝑖 + 1)))) limℂ (𝑆‘(𝑖 + 1)))) |
391 | | eqeq1 2782 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑆‘𝑖) ↔ 𝑥 = (𝑆‘𝑖))) |
392 | | eqeq1 2782 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 = (𝑆‘(𝑖 + 1)) ↔ 𝑥 = (𝑆‘(𝑖 + 1)))) |
393 | 392, 29 | ifbieq2d 4376 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦)) = if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥))) |
394 | 391, 393 | ifbieq2d 4376 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → if(𝑦 = (𝑆‘𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))) = if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
395 | 394 | cbvmptv 5029 |
. . . . . 6
⊢ (𝑦 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆‘𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦)))) = (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑥 = (𝑆‘𝑖), 𝑅, if(𝑥 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) |
396 | | eqid 2778 |
. . . . . 6
⊢ (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆‘𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))))‘(𝑥 − -𝑇))) = (𝑥 ∈ (((𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇))‘𝑖)[,]((𝑗 ∈ (0...𝑀) ↦ ((𝑆‘𝑗) + -𝑇))‘(𝑖 + 1))) ↦ ((𝑦 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ if(𝑦 = (𝑆‘𝑖), 𝑅, if(𝑦 = (𝑆‘(𝑖 + 1)), 𝐿, (𝐹‘𝑦))))‘(𝑥 − -𝑇))) |
397 | 77, 79, 80, 81, 84, 170, 228, 231, 232, 349, 385, 390, 395, 396 | fourierdlem81 41904 |
. . . . 5
⊢ ((𝜑 ∧ 0 < -𝑇) → ∫(((𝐴 + 𝑇) + -𝑇)[,]((𝐵 + 𝑇) + -𝑇))(𝐹‘𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥) |
398 | 74, 397 | eqtr2d 2815 |
. . . 4
⊢ ((𝜑 ∧ 0 < -𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
399 | 49, 59, 398 | syl2anc 576 |
. . 3
⊢ (((𝜑 ∧ ¬ 0 < 𝑇) ∧ ¬ 𝑇 = 0) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
400 | 48, 399 | pm2.61dan 800 |
. 2
⊢ ((𝜑 ∧ ¬ 0 < 𝑇) → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
401 | 34, 400 | pm2.61dan 800 |
1
⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |