Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fouriersw Structured version   Visualization version   GIF version

Theorem fouriersw 42510
Description: Fourier series convergence, for the square wave function. Where 𝐹 is discontinuous, the series converges to 0, the average value of the left and the right limits. Notice that 𝐹 is an odd function and its Fourier expansion has only sine terms (coefficients for cosine terms are zero). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fouriersw.t 𝑇 = (2 · π)
fouriersw.f 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
fouriersw.x 𝑋 ∈ ℝ
fouriersw.z 𝑆 = (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))
fouriersw.y 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋))
Assertion
Ref Expression
fouriersw (((4 / π) · Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = 𝑌 ∧ seq1( + , 𝑆) ⇝ ((π / 4) · 𝑌))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑥,𝑇   𝑘,𝑋,𝑛   𝑥,𝑋   𝑘,𝑌
Allowed substitution hints:   𝑆(𝑥,𝑘,𝑛)   𝑇(𝑘,𝑛)   𝐹(𝑘)   𝑌(𝑥,𝑛)

Proof of Theorem fouriersw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12275 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 12007 . . . . . . 7 (⊤ → 1 ∈ ℤ)
3 eqidd 2822 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))) = (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))
4 oveq2 7158 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
54oveq1d 7165 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((2 · 𝑛) − 1) = ((2 · 𝑘) − 1))
65oveq1d 7165 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (((2 · 𝑛) − 1) · 𝑋) = (((2 · 𝑘) − 1) · 𝑋))
76fveq2d 6668 . . . . . . . . . . 11 (𝑛 = 𝑘 → (sin‘(((2 · 𝑛) − 1) · 𝑋)) = (sin‘(((2 · 𝑘) − 1) · 𝑋)))
87, 5oveq12d 7168 . . . . . . . . . 10 (𝑛 = 𝑘 → ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)) = ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))
98adantl 484 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)) = ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))
10 id 22 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
11 ovex 7183 . . . . . . . . . 10 ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) ∈ V
1211a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) ∈ V)
133, 9, 10, 12fvmptd 6769 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))‘𝑘) = ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))
1413adantl 484 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))‘𝑘) = ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))
15 2z 12008 . . . . . . . . . . . . . . 15 2 ∈ ℤ
1615a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 2 ∈ ℤ)
17 nnz 11998 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
1816, 17zmulcld 12087 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℤ)
19 1zzd 12007 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 1 ∈ ℤ)
2018, 19zsubcld 12086 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℤ)
2120zcnd 12082 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℂ)
22 fouriersw.x . . . . . . . . . . . . 13 𝑋 ∈ ℝ
2322recni 10649 . . . . . . . . . . . 12 𝑋 ∈ ℂ
2423a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑋 ∈ ℂ)
2521, 24mulcld 10655 . . . . . . . . . 10 (𝑘 ∈ ℕ → (((2 · 𝑘) − 1) · 𝑋) ∈ ℂ)
2625sincld 15477 . . . . . . . . 9 (𝑘 ∈ ℕ → (sin‘(((2 · 𝑘) − 1) · 𝑋)) ∈ ℂ)
27 0red 10638 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 ∈ ℝ)
28 2re 11705 . . . . . . . . . . . . . 14 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ)
30 1red 10636 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 1 ∈ ℝ)
3129, 30remulcld 10665 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 1) ∈ ℝ)
3231, 30resubcld 11062 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 1) − 1) ∈ ℝ)
3320zred 12081 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℝ)
34 0lt1 11156 . . . . . . . . . . . . 13 0 < 1
35 2t1e2 11794 . . . . . . . . . . . . . . 15 (2 · 1) = 2
3635oveq1i 7160 . . . . . . . . . . . . . 14 ((2 · 1) − 1) = (2 − 1)
37 2m1e1 11757 . . . . . . . . . . . . . 14 (2 − 1) = 1
3836, 37eqtr2i 2845 . . . . . . . . . . . . 13 1 = ((2 · 1) − 1)
3934, 38breqtri 5083 . . . . . . . . . . . 12 0 < ((2 · 1) − 1)
4039a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 < ((2 · 1) − 1))
4118zred 12081 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
42 nnre 11639 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
43 0le2 11733 . . . . . . . . . . . . . 14 0 ≤ 2
4443a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 2)
45 nnge1 11659 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
4630, 42, 29, 44, 45lemul2ad 11574 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 1) ≤ (2 · 𝑘))
4731, 41, 30, 46lesub1dd 11250 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 1) − 1) ≤ ((2 · 𝑘) − 1))
4827, 32, 33, 40, 47ltletrd 10794 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < ((2 · 𝑘) − 1))
4927, 48gtned 10769 . . . . . . . . 9 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ≠ 0)
5026, 21, 49divcld 11410 . . . . . . . 8 (𝑘 ∈ ℕ → ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) ∈ ℂ)
5150adantl 484 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) ∈ ℂ)
52 picn 25039 . . . . . . . . . . 11 π ∈ ℂ
5352a1i 11 . . . . . . . . . 10 (⊤ → π ∈ ℂ)
54 4cn 11716 . . . . . . . . . . 11 4 ∈ ℂ
5554a1i 11 . . . . . . . . . 10 (⊤ → 4 ∈ ℂ)
56 4ne0 11739 . . . . . . . . . . 11 4 ≠ 0
5756a1i 11 . . . . . . . . . 10 (⊤ → 4 ≠ 0)
5853, 55, 57divcld 11410 . . . . . . . . 9 (⊤ → (π / 4) ∈ ℂ)
59 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))
60 0cnd 10628 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 0 ∈ ℂ)
6154a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 4 ∈ ℂ)
62 nncn 11640 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
63 mulcl 10615 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℂ ∧ π ∈ ℂ) → (𝑛 · π) ∈ ℂ)
6462, 52, 63sylancl 588 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · π) ∈ ℂ)
6552a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → π ∈ ℂ)
66 nnne0 11665 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
67 0re 10637 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
68 pipos 25040 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
6967, 68gtneii 10746 . . . . . . . . . . . . . . . . . . . . 21 π ≠ 0
7069a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → π ≠ 0)
7162, 65, 66, 70mulne0d 11286 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · π) ≠ 0)
7261, 64, 71divcld 11410 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (4 / (𝑛 · π)) ∈ ℂ)
7323a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑋 ∈ ℂ)
7462, 73mulcld 10655 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · 𝑋) ∈ ℂ)
7574sincld 15477 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (sin‘(𝑛 · 𝑋)) ∈ ℂ)
7672, 75mulcld 10655 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))) ∈ ℂ)
7760, 76ifcld 4511 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))) ∈ ℂ)
7859, 77fmpti 6870 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))):ℕ⟶ℂ
7978a1i 11 . . . . . . . . . . . . . 14 (⊤ → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))):ℕ⟶ℂ)
80 eqidd 2822 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))))
81 breq2 5062 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (2 ∥ 𝑛 ↔ 2 ∥ 𝑘))
82 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
8382oveq2d 7166 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (4 / (𝑛 · π)) = (4 / (𝑘 · π)))
84 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
8584fveq2d 6668 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
8683, 85oveq12d 7168 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))) = ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋))))
8781, 86ifbieq2d 4491 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))) = if(2 ∥ 𝑘, 0, ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋)))))
8887adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))) = if(2 ∥ 𝑘, 0, ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋)))))
89 c0ex 10629 . . . . . . . . . . . . . . . . . . . 20 0 ∈ V
90 ovex 7183 . . . . . . . . . . . . . . . . . . . 20 ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋))) ∈ V
9189, 90ifex 4514 . . . . . . . . . . . . . . . . . . 19 if(2 ∥ 𝑘, 0, ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋)))) ∈ V
9291a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → if(2 ∥ 𝑘, 0, ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋)))) ∈ V)
9380, 88, 10, 92fvmptd 6769 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘𝑘) = if(2 ∥ 𝑘, 0, ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋)))))
9493adantr 483 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘𝑘) = if(2 ∥ 𝑘, 0, ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋)))))
95 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝑘 / 2) ∈ ℕ)
96 simpl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → 𝑘 ∈ ℕ)
97 2nn 11704 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
98 nndivdvds 15610 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 2 ∈ ℕ) → (2 ∥ 𝑘 ↔ (𝑘 / 2) ∈ ℕ))
9996, 97, 98sylancl 588 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (2 ∥ 𝑘 ↔ (𝑘 / 2) ∈ ℕ))
10095, 99mpbird 259 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → 2 ∥ 𝑘)
101100iftrued 4474 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → if(2 ∥ 𝑘, 0, ((4 / (𝑘 · π)) · (sin‘(𝑘 · 𝑋)))) = 0)
10294, 101eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘𝑘) = 0)
1031023adant1 1126 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘𝑘) = 0)
104 fouriersw.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))
105 1re 10635 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
106105renegcli 10941 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℝ
107105, 106ifcli 4512 . . . . . . . . . . . . . . . . . . 19 if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ
108107a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ)
109104, 108fmpti 6870 . . . . . . . . . . . . . . . . 17 𝐹:ℝ⟶ℝ
110 fouriersw.t . . . . . . . . . . . . . . . . 17 𝑇 = (2 · π)
111 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥 mod 𝑇) = (𝑦 mod 𝑇))
112111breq1d 5068 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝑥 mod 𝑇) < π ↔ (𝑦 mod 𝑇) < π))
113112ifbid 4488 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → if((𝑥 mod 𝑇) < π, 1, -1) = if((𝑦 mod 𝑇) < π, 1, -1))
114113cbvmptv 5161 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) = (𝑦 ∈ ℝ ↦ if((𝑦 mod 𝑇) < π, 1, -1))
115104, 114eqtri 2844 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑦 ∈ ℝ ↦ if((𝑦 mod 𝑇) < π, 1, -1))
116115a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → 𝐹 = (𝑦 ∈ ℝ ↦ if((𝑦 mod 𝑇) < π, 1, -1)))
117 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑥 + 𝑇) → (𝑦 mod 𝑇) = ((𝑥 + 𝑇) mod 𝑇))
118 pire 25038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 π ∈ ℝ
11928, 118remulcli 10651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2 · π) ∈ ℝ
120110, 119eqeltri 2909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑇 ∈ ℝ
121120recni 10649 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑇 ∈ ℂ
122121mulid2i 10640 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1 · 𝑇) = 𝑇
123122eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑇 = (1 · 𝑇)
124123oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 + 𝑇) = (𝑥 + (1 · 𝑇))
125124oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇)
126117, 125syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑥 + 𝑇) → (𝑦 mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇))
127126adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝑦 = (𝑥 + 𝑇)) → (𝑦 mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇))
128 simpl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝑦 = (𝑥 + 𝑇)) → 𝑥 ∈ ℝ)
129 2pos 11734 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 2
13028, 118, 129, 68mulgt0ii 10767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < (2 · π)
131110eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 · π) = 𝑇
132130, 131breqtri 5083 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 < 𝑇
133120, 132elrpii 12386 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑇 ∈ ℝ+
134133a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝑦 = (𝑥 + 𝑇)) → 𝑇 ∈ ℝ+)
135 1zzd 12007 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝑦 = (𝑥 + 𝑇)) → 1 ∈ ℤ)
136 modcyc 13268 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
137128, 134, 135, 136syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝑦 = (𝑥 + 𝑇)) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
138127, 137eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑦 = (𝑥 + 𝑇)) → (𝑦 mod 𝑇) = (𝑥 mod 𝑇))
139138breq1d 5068 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑦 = (𝑥 + 𝑇)) → ((𝑦 mod 𝑇) < π ↔ (𝑥 mod 𝑇) < π))
140139ifbid 4488 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑦 = (𝑥 + 𝑇)) → if((𝑦 mod 𝑇) < π, 1, -1) = if((𝑥 mod 𝑇) < π, 1, -1))
141 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
142120a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → 𝑇 ∈ ℝ)
143141, 142readdcld 10664 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (𝑥 + 𝑇) ∈ ℝ)
144116, 140, 143, 108fvmptd 6769 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = if((𝑥 mod 𝑇) < π, 1, -1))
145104fvmpt2 6773 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ if((𝑥 mod 𝑇) < π, 1, -1) ∈ ℝ) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
146107, 145mpan2 689 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
147144, 146eqtr4d 2859 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
148 eqid 2821 . . . . . . . . . . . . . . . . 17 ((ℝ D 𝐹) ↾ (-π(,)π)) = ((ℝ D 𝐹) ↾ (-π(,)π))
149 snfi 8588 . . . . . . . . . . . . . . . . . 18 {0} ∈ Fin
150 eldifi 4102 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → 𝑥 ∈ (-π(,)π))
151 0xr 10682 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ*
152151a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (-π(,)π) ∧ 0 < 𝑥) → 0 ∈ ℝ*)
153118rexri 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 π ∈ ℝ*
154153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (-π(,)π) ∧ 0 < 𝑥) → π ∈ ℝ*)
155 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
156155adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (-π(,)π) ∧ 0 < 𝑥) → 𝑥 ∈ ℝ)
157 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (-π(,)π) ∧ 0 < 𝑥) → 0 < 𝑥)
158118renegcli 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 -π ∈ ℝ
159158rexri 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 -π ∈ ℝ*
160 iooltub 41779 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (-π(,)π)) → 𝑥 < π)
161159, 153, 160mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (-π(,)π) → 𝑥 < π)
162161adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ (-π(,)π) ∧ 0 < 𝑥) → 𝑥 < π)
163152, 154, 156, 157, 162eliood 41766 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (-π(,)π) ∧ 0 < 𝑥) → 𝑥 ∈ (0(,)π))
164 negpilt0 41539 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 -π < 0
165158, 67, 164ltleii 10757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 -π ≤ 0
166 iooss1 12767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((-π ∈ ℝ* ∧ -π ≤ 0) → (0(,)π) ⊆ (-π(,)π))
167159, 165, 166mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0(,)π) ⊆ (-π(,)π)
168167sseli 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (-π(,)π))
169104reseq1i 5843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐹 ↾ (0(,)π)) = ((𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) ↾ (0(,)π))
170 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (0(,)π) ⊆ ℝ
171 resmpt 5899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((0(,)π) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) ↾ (0(,)π)) = (𝑥 ∈ (0(,)π) ↦ if((𝑥 mod 𝑇) < π, 1, -1)))
172170, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) ↾ (0(,)π)) = (𝑥 ∈ (0(,)π) ↦ if((𝑥 mod 𝑇) < π, 1, -1))
173 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
174133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ+)
175 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (0(,)π) → 0 ∈ ℝ)
176 ioogtlb 41763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (0(,)π)) → 0 < 𝑥)
177151, 153, 176mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (0(,)π) → 0 < 𝑥)
178175, 173, 177ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (0(,)π) → 0 ≤ 𝑥)
179118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (0(,)π) → π ∈ ℝ)
180120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (0(,)π) → 𝑇 ∈ ℝ)
181168, 161syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (0(,)π) → 𝑥 < π)
182 pirp 25041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 π ∈ ℝ+
183 2timesgt 41547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (π ∈ ℝ+ → π < (2 · π))
184182, 183ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 π < (2 · π)
185184, 131breqtri 5083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 π < 𝑇
186185a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (0(,)π) → π < 𝑇)
187173, 179, 180, 181, 186lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (0(,)π) → 𝑥 < 𝑇)
188 modid 13258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑇)) → (𝑥 mod 𝑇) = 𝑥)
189173, 174, 178, 187, 188syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) = 𝑥)
190189, 181eqbrtrd 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (0(,)π) → (𝑥 mod 𝑇) < π)
191190iftrued 4474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (0(,)π) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
192191mpteq2ia 5149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (0(,)π) ↦ if((𝑥 mod 𝑇) < π, 1, -1)) = (𝑥 ∈ (0(,)π) ↦ 1)
193169, 172, 1923eqtrri 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (0(,)π) ↦ 1) = (𝐹 ↾ (0(,)π))
194193oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (ℝ D (𝑥 ∈ (0(,)π) ↦ 1)) = (ℝ D (𝐹 ↾ (0(,)π)))
195 reelprrecn 10623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ℝ ∈ {ℝ, ℂ}
196195a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → ℝ ∈ {ℝ, ℂ})
197 iooretop 23368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (0(,)π) ∈ (topGen‘ran (,))
198 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
199198tgioo2 23405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
200197, 199eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (0(,)π) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
201200a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → (0(,)π) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
202 1cnd 10630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → 1 ∈ ℂ)
203196, 201, 202dvmptconst 42192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⊤ → (ℝ D (𝑥 ∈ (0(,)π) ↦ 1)) = (𝑥 ∈ (0(,)π) ↦ 0))
204203mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (ℝ D (𝑥 ∈ (0(,)π) ↦ 1)) = (𝑥 ∈ (0(,)π) ↦ 0)
205 ssid 3988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ℝ ⊆ ℝ
206 ax-resscn 10588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ℝ ⊆ ℂ
207 fss 6521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
208109, 206, 207mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝐹:ℝ⟶ℂ
209 dvresioo 42199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((ℝ ⊆ ℝ ∧ 𝐹:ℝ⟶ℂ) → (ℝ D (𝐹 ↾ (0(,)π))) = ((ℝ D 𝐹) ↾ (0(,)π)))
210205, 208, 209mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (ℝ D (𝐹 ↾ (0(,)π))) = ((ℝ D 𝐹) ↾ (0(,)π))
211194, 204, 2103eqtr3i 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (0(,)π) ↦ 0) = ((ℝ D 𝐹) ↾ (0(,)π))
212211dmeqi 5767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 dom (𝑥 ∈ (0(,)π) ↦ 0) = dom ((ℝ D 𝐹) ↾ (0(,)π))
213 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (0(,)π) ↦ 0) = (𝑥 ∈ (0(,)π) ↦ 0)
21489, 213dmmpti 6486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 dom (𝑥 ∈ (0(,)π) ↦ 0) = (0(,)π)
215212, 214eqtr3i 2846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 dom ((ℝ D 𝐹) ↾ (0(,)π)) = (0(,)π)
216 ssdmres 5870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0(,)π) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (0(,)π)) = (0(,)π))
217215, 216mpbir 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0(,)π) ⊆ dom (ℝ D 𝐹)
218217sseli 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0(,)π) → 𝑥 ∈ dom (ℝ D 𝐹))
219168, 218elind 4170 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ((-π(,)π) ∩ dom (ℝ D 𝐹)))
220 dmres 5869 . . . . . . . . . . . . . . . . . . . . . . . . . 26 dom ((ℝ D 𝐹) ↾ (-π(,)π)) = ((-π(,)π) ∩ dom (ℝ D 𝐹))
221219, 220eleqtrrdi 2924 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (0(,)π) → 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
222163, 221syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (-π(,)π) ∧ 0 < 𝑥) → 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
223222adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ 0 < 𝑥) → 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
224159a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → -π ∈ ℝ*)
225151a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → 0 ∈ ℝ*)
226155ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → 𝑥 ∈ ℝ)
227 ioogtlb 41763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (-π(,)π)) → -π < 𝑥)
228159, 153, 227mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (-π(,)π) → -π < 𝑥)
229228ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → -π < 𝑥)
230 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → 0 ∈ ℝ)
231 neqne 3024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 = 0 → 𝑥 ≠ 0)
232231ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → 𝑥 ≠ 0)
233 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → ¬ 0 < 𝑥)
234226, 230, 232, 233lttri5d 41559 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → 𝑥 < 0)
235224, 225, 226, 229, 234eliood 41766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → 𝑥 ∈ (-π(,)0))
23667, 118, 68ltleii 10757 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ≤ π
237 iooss2 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π ∈ ℝ* ∧ 0 ≤ π) → (-π(,)0) ⊆ (-π(,)π))
238153, 236, 237mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-π(,)0) ⊆ (-π(,)π)
239238sseli 3962 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ (-π(,)π))
240104reseq1i 5843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐹 ↾ (-π(,)0)) = ((𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) ↾ (-π(,)0))
241 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (-π(,)0) ⊆ ℝ
242 resmpt 5899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((-π(,)0) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) ↾ (-π(,)0)) = (𝑥 ∈ (-π(,)0) ↦ if((𝑥 mod 𝑇) < π, 1, -1)))
243241, 242ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) ↾ (-π(,)0)) = (𝑥 ∈ (-π(,)0) ↦ if((𝑥 mod 𝑇) < π, 1, -1))
244118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (-π(,)0) → π ∈ ℝ)
245 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℝ)
246133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ+)
247245, 246modcld 13237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (-π(,)0) → (𝑥 mod 𝑇) ∈ ℝ)
248245, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) ∈ ℝ)
249522timesi 11769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (2 · π) = (π + π)
250110, 249eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 𝑇 = (π + π)
251250oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (-π + 𝑇) = (-π + (π + π))
252 negpicn 25042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 -π ∈ ℂ
253252, 52, 52addassi 10645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((-π + π) + π) = (-π + (π + π))
254253eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (-π + (π + π)) = ((-π + π) + π)
25552negidi 10949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (π + -π) = 0
25652, 252, 255addcomli 10826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (-π + π) = 0
257256oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((-π + π) + π) = (0 + π)
25852addid2i 10822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (0 + π) = π
259257, 258eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((-π + π) + π) = π
260251, 254, 2593eqtrri 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 π = (-π + 𝑇)
261260a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (-π(,)0) → π = (-π + 𝑇))
262158a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (-π(,)0) → -π ∈ ℝ)
263120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℝ)
264239, 228syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (-π(,)0) → -π < 𝑥)
265262, 245, 263, 264ltadd1dd 11245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) < (𝑥 + 𝑇))
266261, 265eqbrtrd 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (-π(,)0) → π < (𝑥 + 𝑇))
267244, 248, 266ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (-π(,)0) → π ≤ (𝑥 + 𝑇))
268 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ (-π(,)0) → 0 ∈ ℝ)
269158, 120readdcli 10650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (-π + 𝑇) ∈ ℝ
270269a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ (-π(,)0) → (-π + 𝑇) ∈ ℝ)
27168a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 ∈ (-π(,)0) → 0 < π)
272271, 260breqtrdi 5099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ (-π(,)0) → 0 < (-π + 𝑇))
273268, 270, 248, 272, 265lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ (-π(,)0) → 0 < (𝑥 + 𝑇))
274268, 248, 273ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (-π(,)0) → 0 ≤ (𝑥 + 𝑇))
275245recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ℂ)
276121a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ (-π(,)0) → 𝑇 ∈ ℂ)
277275, 276addcomd 10836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑇 + 𝑥))
278 iooltub 41779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑥 ∈ (-π(,)0)) → 𝑥 < 0)
279159, 151, 278mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ (-π(,)0) → 𝑥 < 0)
280 ltaddneg 10849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (𝑥 < 0 ↔ (𝑇 + 𝑥) < 𝑇))
281245, 120, 280sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ (-π(,)0) → (𝑥 < 0 ↔ (𝑇 + 𝑥) < 𝑇))
282279, 281mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ (-π(,)0) → (𝑇 + 𝑥) < 𝑇)
283277, 282eqbrtrd 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) < 𝑇)
284274, 283jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (-π(,)0) → (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇))
285 modid2 13260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑥 + 𝑇) ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇) ↔ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)))
286248, 133, 285sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (-π(,)0) → (((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇) ↔ (0 ≤ (𝑥 + 𝑇) ∧ (𝑥 + 𝑇) < 𝑇)))
287284, 286mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 + 𝑇))
288125a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇))
289133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ ℝ → 𝑇 ∈ ℝ+)
290 1zzd 12007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ ℝ → 1 ∈ ℤ)
291141, 289, 290, 136syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ ℝ → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
292288, 291eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 mod 𝑇))
293245, 292syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (-π(,)0) → ((𝑥 + 𝑇) mod 𝑇) = (𝑥 mod 𝑇))
294287, 293eqtr3d 2858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (-π(,)0) → (𝑥 + 𝑇) = (𝑥 mod 𝑇))
295267, 294breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (-π(,)0) → π ≤ (𝑥 mod 𝑇))
296244, 247, 295lensymd 10785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (-π(,)0) → ¬ (𝑥 mod 𝑇) < π)
297296iffalsed 4477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (-π(,)0) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
298297mpteq2ia 5149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (-π(,)0) ↦ if((𝑥 mod 𝑇) < π, 1, -1)) = (𝑥 ∈ (-π(,)0) ↦ -1)
299240, 243, 2983eqtrri 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (-π(,)0) ↦ -1) = (𝐹 ↾ (-π(,)0))
300299oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (ℝ D (𝑥 ∈ (-π(,)0) ↦ -1)) = (ℝ D (𝐹 ↾ (-π(,)0)))
301 iooretop 23368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (-π(,)0) ∈ (topGen‘ran (,))
302301, 199eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (-π(,)0) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
303302a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⊤ → (-π(,)0) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
304202negcld 10978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⊤ → -1 ∈ ℂ)
305196, 303, 304dvmptconst 42192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → (ℝ D (𝑥 ∈ (-π(,)0) ↦ -1)) = (𝑥 ∈ (-π(,)0) ↦ 0))
306305mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (ℝ D (𝑥 ∈ (-π(,)0) ↦ -1)) = (𝑥 ∈ (-π(,)0) ↦ 0)
307 dvresioo 42199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((ℝ ⊆ ℝ ∧ 𝐹:ℝ⟶ℂ) → (ℝ D (𝐹 ↾ (-π(,)0))) = ((ℝ D 𝐹) ↾ (-π(,)0)))
308205, 208, 307mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (ℝ D (𝐹 ↾ (-π(,)0))) = ((ℝ D 𝐹) ↾ (-π(,)0))
309300, 306, 3083eqtr3i 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (-π(,)0) ↦ 0) = ((ℝ D 𝐹) ↾ (-π(,)0))
310309dmeqi 5767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 dom (𝑥 ∈ (-π(,)0) ↦ 0) = dom ((ℝ D 𝐹) ↾ (-π(,)0))
311 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (-π(,)0) ↦ 0) = (𝑥 ∈ (-π(,)0) ↦ 0)
31289, 311dmmpti 6486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 dom (𝑥 ∈ (-π(,)0) ↦ 0) = (-π(,)0)
313310, 312eqtr3i 2846 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 dom ((ℝ D 𝐹) ↾ (-π(,)0)) = (-π(,)0)
314 ssdmres 5870 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((-π(,)0) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (-π(,)0)) = (-π(,)0))
315313, 314mpbir 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-π(,)0) ⊆ dom (ℝ D 𝐹)
316315sseli 3962 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ dom (ℝ D 𝐹))
317239, 316elind 4170 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ((-π(,)π) ∩ dom (ℝ D 𝐹)))
318317, 220eleqtrrdi 2924 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
319235, 318syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) ∧ ¬ 0 < 𝑥) → 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
320223, 319pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (-π(,)π) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
321150, 320sylan 582 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
322 eldifn 4103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → ¬ 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
323322adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = 0) → ¬ 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
324321, 323condan 816 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → 𝑥 = 0)
325 velsn 4576 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {0} ↔ 𝑥 = 0)
326324, 325sylibr 236 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → 𝑥 ∈ {0})
327326ssriv 3970 . . . . . . . . . . . . . . . . . 18 ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ⊆ {0}
328 ssfi 8732 . . . . . . . . . . . . . . . . . 18 (({0} ∈ Fin ∧ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ⊆ {0}) → ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∈ Fin)
329149, 327, 328mp2an 690 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∈ Fin
330 inss1 4204 . . . . . . . . . . . . . . . . . . . . . 22 ((-π(,)π) ∩ dom (ℝ D 𝐹)) ⊆ (-π(,)π)
331220, 330eqsstri 4000 . . . . . . . . . . . . . . . . . . . . 21 dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ (-π(,)π)
332 ioosscn 41762 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)π) ⊆ ℂ
333331, 332sstri 3975 . . . . . . . . . . . . . . . . . . . 20 dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ ℂ
334333a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ ℂ)
335 dvf 24499 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
336 fresin 6541 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → ((ℝ D 𝐹) ↾ (-π(,)π)):(dom (ℝ D 𝐹) ∩ (-π(,)π))⟶ℂ)
337 ffdm 6530 . . . . . . . . . . . . . . . . . . . . . 22 (((ℝ D 𝐹) ↾ (-π(,)π)):(dom (ℝ D 𝐹) ∩ (-π(,)π))⟶ℂ → (((ℝ D 𝐹) ↾ (-π(,)π)):dom ((ℝ D 𝐹) ↾ (-π(,)π))⟶ℂ ∧ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ (dom (ℝ D 𝐹) ∩ (-π(,)π))))
338335, 336, 337mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝐹) ↾ (-π(,)π)):dom ((ℝ D 𝐹) ↾ (-π(,)π))⟶ℂ ∧ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ (dom (ℝ D 𝐹) ∩ (-π(,)π)))
339338simpli 486 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D 𝐹) ↾ (-π(,)π)):dom ((ℝ D 𝐹) ↾ (-π(,)π))⟶ℂ
340339a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((ℝ D 𝐹) ↾ (-π(,)π)):dom ((ℝ D 𝐹) ↾ (-π(,)π))⟶ℂ)
341159a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 𝑥 < 0) → -π ∈ ℝ*)
342151a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 𝑥 < 0) → 0 ∈ ℝ*)
343 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-π(,)π) ⊆ ℝ
344331sseli 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → 𝑥 ∈ (-π(,)π))
345343, 344sseldi 3964 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → 𝑥 ∈ ℝ)
346345adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
347344, 228syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → -π < 𝑥)
348347adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 𝑥 < 0) → -π < 𝑥)
349 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 𝑥 < 0) → 𝑥 < 0)
350341, 342, 346, 348, 349eliood 41766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 𝑥 < 0) → 𝑥 ∈ (-π(,)0))
351 elun1 4151 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (-π(,)0) → 𝑥 ∈ ((-π(,)0) ∪ (0(,)π)))
352350, 351syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 𝑥 < 0) → 𝑥 ∈ ((-π(,)0) ∪ (0(,)π)))
353 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
354 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ ¬ 𝑥 < 0) → 0 ∈ ℝ)
355345adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ℝ)
356 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ ¬ 𝑥 < 0) → ¬ 𝑥 < 0)
357354, 355, 356nltled 10784 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ ¬ 𝑥 < 0) → 0 ≤ 𝑥)
358 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → 𝑥 = 0)
359205a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → ℝ ⊆ ℝ)
360 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (topGen‘ran (,)) = (topGen‘ran (,))
361208a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → 𝐹:ℝ⟶ℂ)
362 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → 0 ∈ ℝ)
363 mnfxr 10692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 -∞ ∈ ℝ*
364363a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → -∞ ∈ ℝ*)
365362mnfltd 12513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → -∞ < 0)
366360, 364, 362, 365lptioo2 41905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⊤ → 0 ∈ ((limPt‘(topGen‘ran (,)))‘(-∞(,)0)))
367 incom 4177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (ℝ ∩ (-∞(,)0)) = ((-∞(,)0) ∩ ℝ)
368 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (-∞(,)0) ⊆ ℝ
369 df-ss 3951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((-∞(,)0) ⊆ ℝ ↔ ((-∞(,)0) ∩ ℝ) = (-∞(,)0))
370368, 369mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((-∞(,)0) ∩ ℝ) = (-∞(,)0)
371367, 370eqtr2i 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (-∞(,)0) = (ℝ ∩ (-∞(,)0))
372371fveq2i 6667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((limPt‘(topGen‘ran (,)))‘(-∞(,)0)) = ((limPt‘(topGen‘ran (,)))‘(ℝ ∩ (-∞(,)0)))
373366, 372eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → 0 ∈ ((limPt‘(topGen‘ran (,)))‘(ℝ ∩ (-∞(,)0))))
374 pnfxr 10689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 +∞ ∈ ℝ*
375374a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → +∞ ∈ ℝ*)
376362ltpnfd 12510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → 0 < +∞)
377360, 362, 375, 376lptioo1 41906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⊤ → 0 ∈ ((limPt‘(topGen‘ran (,)))‘(0(,)+∞)))
378 incom 4177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (ℝ ∩ (0(,)+∞)) = ((0(,)+∞) ∩ ℝ)
379 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (0(,)+∞) ⊆ ℝ
380 df-ss 3951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((0(,)+∞) ⊆ ℝ ↔ ((0(,)+∞) ∩ ℝ) = (0(,)+∞))
381379, 380mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((0(,)+∞) ∩ ℝ) = (0(,)+∞)
382378, 381eqtr2i 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (0(,)+∞) = (ℝ ∩ (0(,)+∞))
383382fveq2i 6667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((limPt‘(topGen‘ran (,)))‘(0(,)+∞)) = ((limPt‘(topGen‘ran (,)))‘(ℝ ∩ (0(,)+∞)))
384377, 383eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → 0 ∈ ((limPt‘(topGen‘ran (,)))‘(ℝ ∩ (0(,)+∞))))
385 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (-π(,)0) ↦ -1) = (𝑥 ∈ (-π(,)0) ↦ -1)
386 mnfle 12523 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (-π ∈ ℝ* → -∞ ≤ -π)
387159, 386ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 -∞ ≤ -π
388 iooss1 12767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((-∞ ∈ ℝ* ∧ -∞ ≤ -π) → (-π(,)0) ⊆ (-∞(,)0))
389363, 387, 388mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (-π(,)0) ⊆ (-∞(,)0)
390389a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (⊤ → (-π(,)0) ⊆ (-∞(,)0))
391 ioosscn 41762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (-∞(,)0) ⊆ ℂ
392390, 391sstrdi 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → (-π(,)0) ⊆ ℂ)
393 0cnd 10628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → 0 ∈ ℂ)
394385, 392, 304, 393constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⊤ → -1 ∈ ((𝑥 ∈ (-π(,)0) ↦ -1) lim 0))
395 resabs1 5877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((-π(,)0) ⊆ (-∞(,)0) → ((𝐹 ↾ (-∞(,)0)) ↾ (-π(,)0)) = (𝐹 ↾ (-π(,)0)))
396389, 395ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐹 ↾ (-∞(,)0)) ↾ (-π(,)0)) = (𝐹 ↾ (-π(,)0))
397299, 396eqtr4i 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (-π(,)0) ↦ -1) = ((𝐹 ↾ (-∞(,)0)) ↾ (-π(,)0))
398397oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (-π(,)0) ↦ -1) lim 0) = (((𝐹 ↾ (-∞(,)0)) ↾ (-π(,)0)) lim 0)
399 fssres 6538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐹:ℝ⟶ℂ ∧ (-∞(,)0) ⊆ ℝ) → (𝐹 ↾ (-∞(,)0)):(-∞(,)0)⟶ℂ)
400208, 368, 399mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐹 ↾ (-∞(,)0)):(-∞(,)0)⟶ℂ
401400a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⊤ → (𝐹 ↾ (-∞(,)0)):(-∞(,)0)⟶ℂ)
402391a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⊤ → (-∞(,)0) ⊆ ℂ)
403 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((TopOpen‘ℂfld) ↾t ((-∞(,)0) ∪ {0})) = ((TopOpen‘ℂfld) ↾t ((-∞(,)0) ∪ {0}))
404 0le0 11732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 0 ≤ 0
405 elioc2 12793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((-π ∈ ℝ* ∧ 0 ∈ ℝ) → (0 ∈ (-π(,]0) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 ≤ 0)))
406159, 67, 405mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (0 ∈ (-π(,]0) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 ≤ 0))
40767, 164, 404, 406mpbir3an 1337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 ∈ (-π(,]0)
408198cnfldtop 23386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (TopOpen‘ℂfld) ∈ Top
409 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (-∞(,]0) ∈ V
410 resttop 21762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((TopOpen‘ℂfld) ∈ Top ∧ (-∞(,]0) ∈ V) → ((TopOpen‘ℂfld) ↾t (-∞(,]0)) ∈ Top)
411408, 409, 410mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((TopOpen‘ℂfld) ↾t (-∞(,]0)) ∈ Top
412159a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (⊤ → -π ∈ ℝ*)
413 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((topGen‘ran (,)) ↾t (-∞(,]0)) = ((topGen‘ran (,)) ↾t (-∞(,]0))
414387a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (⊤ → -∞ ≤ -π)
415364, 412, 362, 360, 413, 414, 362iocopn 41789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (⊤ → (-π(,]0) ∈ ((topGen‘ran (,)) ↾t (-∞(,]0)))
416415mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (-π(,]0) ∈ ((topGen‘ran (,)) ↾t (-∞(,]0))
417199oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((topGen‘ran (,)) ↾t (-∞(,]0)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-∞(,]0))
418 iocssre 12810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (-∞(,]0) ⊆ ℝ)
419363, 67, 418mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (-∞(,]0) ⊆ ℝ
420195elexi 3513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ℝ ∈ V
421 restabs 21767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((TopOpen‘ℂfld) ∈ Top ∧ (-∞(,]0) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-∞(,]0)) = ((TopOpen‘ℂfld) ↾t (-∞(,]0)))
422408, 419, 420, 421mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-∞(,]0)) = ((TopOpen‘ℂfld) ↾t (-∞(,]0))
423417, 422eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((topGen‘ran (,)) ↾t (-∞(,]0)) = ((TopOpen‘ℂfld) ↾t (-∞(,]0))
424416, 423eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (-π(,]0) ∈ ((TopOpen‘ℂfld) ↾t (-∞(,]0))
425 isopn3i 21684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((TopOpen‘ℂfld) ↾t (-∞(,]0)) ∈ Top ∧ (-π(,]0) ∈ ((TopOpen‘ℂfld) ↾t (-∞(,]0))) → ((int‘((TopOpen‘ℂfld) ↾t (-∞(,]0)))‘(-π(,]0)) = (-π(,]0))
426411, 424, 425mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((int‘((TopOpen‘ℂfld) ↾t (-∞(,]0)))‘(-π(,]0)) = (-π(,]0)
427 mnflt0 12514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 -∞ < 0
428 ioounsn 12857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -∞ < 0) → ((-∞(,)0) ∪ {0}) = (-∞(,]0))
429363, 151, 427, 428mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((-∞(,)0) ∪ {0}) = (-∞(,]0)
430429eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (-∞(,]0) = ((-∞(,)0) ∪ {0})
431430oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((TopOpen‘ℂfld) ↾t (-∞(,]0)) = ((TopOpen‘ℂfld) ↾t ((-∞(,)0) ∪ {0}))
432431fveq2i 6667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (int‘((TopOpen‘ℂfld) ↾t (-∞(,]0))) = (int‘((TopOpen‘ℂfld) ↾t ((-∞(,)0) ∪ {0})))
433 ioounsn 12857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π < 0) → ((-π(,)0) ∪ {0}) = (-π(,]0))
434159, 151, 164, 433mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((-π(,)0) ∪ {0}) = (-π(,]0)
435434eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (-π(,]0) = ((-π(,)0) ∪ {0})
436432, 435fveq12i 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((int‘((TopOpen‘ℂfld) ↾t (-∞(,]0)))‘(-π(,]0)) = ((int‘((TopOpen‘ℂfld) ↾t ((-∞(,)0) ∪ {0})))‘((-π(,)0) ∪ {0}))
437426, 436eqtr3i 2846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (-π(,]0) = ((int‘((TopOpen‘ℂfld) ↾t ((-∞(,)0) ∪ {0})))‘((-π(,)0) ∪ {0}))
438407, 437eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((-∞(,)0) ∪ {0})))‘((-π(,)0) ∪ {0}))
439438a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⊤ → 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((-∞(,)0) ∪ {0})))‘((-π(,)0) ∪ {0})))
440401, 390, 402, 198, 403, 439limcres 24478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (⊤ → (((𝐹 ↾ (-∞(,)0)) ↾ (-π(,)0)) lim 0) = ((𝐹 ↾ (-∞(,)0)) lim 0))
441440mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐹 ↾ (-∞(,)0)) ↾ (-π(,)0)) lim 0) = ((𝐹 ↾ (-∞(,)0)) lim 0)
442398, 441eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ (-π(,)0) ↦ -1) lim 0) = ((𝐹 ↾ (-∞(,)0)) lim 0)
443394, 442eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → -1 ∈ ((𝐹 ↾ (-∞(,)0)) lim 0))
444 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (0(,)π) ↦ 1) = (𝑥 ∈ (0(,)π) ↦ 1)
445 ioosscn 41762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (0(,)π) ⊆ ℂ
446445a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⊤ → (0(,)π) ⊆ ℂ)
447444, 446, 202, 393constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⊤ → 1 ∈ ((𝑥 ∈ (0(,)π) ↦ 1) lim 0))
448 ltpnf 12509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (π ∈ ℝ → π < +∞)
449 xrltle 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((π ∈ ℝ* ∧ +∞ ∈ ℝ*) → (π < +∞ → π ≤ +∞))
450153, 374, 449mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (π < +∞ → π ≤ +∞)
451118, 448, 450mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 π ≤ +∞
452 iooss2 12768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((+∞ ∈ ℝ* ∧ π ≤ +∞) → (0(,)π) ⊆ (0(,)+∞))
453374, 451, 452mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (0(,)π) ⊆ (0(,)+∞)
454 resabs1 5877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((0(,)π) ⊆ (0(,)+∞) → ((𝐹 ↾ (0(,)+∞)) ↾ (0(,)π)) = (𝐹 ↾ (0(,)π)))
455453, 454ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐹 ↾ (0(,)+∞)) ↾ (0(,)π)) = (𝐹 ↾ (0(,)π))
456193, 455eqtr4i 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (0(,)π) ↦ 1) = ((𝐹 ↾ (0(,)+∞)) ↾ (0(,)π))
457456oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (0(,)π) ↦ 1) lim 0) = (((𝐹 ↾ (0(,)+∞)) ↾ (0(,)π)) lim 0)
458 fssres 6538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐹:ℝ⟶ℂ ∧ (0(,)+∞) ⊆ ℝ) → (𝐹 ↾ (0(,)+∞)):(0(,)+∞)⟶ℂ)
459208, 379, 458mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐹 ↾ (0(,)+∞)):(0(,)+∞)⟶ℂ
460459a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⊤ → (𝐹 ↾ (0(,)+∞)):(0(,)+∞)⟶ℂ)
461453a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⊤ → (0(,)π) ⊆ (0(,)+∞))
462 ioosscn 41762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (0(,)+∞) ⊆ ℂ
463462a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⊤ → (0(,)+∞) ⊆ ℂ)
464 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((TopOpen‘ℂfld) ↾t ((0(,)+∞) ∪ {0})) = ((TopOpen‘ℂfld) ↾t ((0(,)+∞) ∪ {0}))
465 elico2 12794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((0 ∈ ℝ ∧ π ∈ ℝ*) → (0 ∈ (0[,)π) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < π)))
46667, 153, 465mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (0 ∈ (0[,)π) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 < π))
46767, 404, 68, 466mpbir3an 1337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 ∈ (0[,)π)
468 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (0[,)+∞) ∈ V
469 resttop 21762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((TopOpen‘ℂfld) ∈ Top ∧ (0[,)+∞) ∈ V) → ((TopOpen‘ℂfld) ↾t (0[,)+∞)) ∈ Top)
470408, 468, 469mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) ∈ Top
471153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (⊤ → π ∈ ℝ*)
472 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((topGen‘ran (,)) ↾t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞))
473451a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (⊤ → π ≤ +∞)
474362, 471, 375, 360, 472, 473icoopn 41794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (⊤ → (0[,)π) ∈ ((topGen‘ran (,)) ↾t (0[,)+∞)))
475474mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (0[,)π) ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))
476199oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((topGen‘ran (,)) ↾t (0[,)+∞)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (0[,)+∞))
477 rge0ssre 12838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (0[,)+∞) ⊆ ℝ
478 restabs 21767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((TopOpen‘ℂfld) ∈ Top ∧ (0[,)+∞) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞)))
479408, 477, 420, 478mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
480476, 479eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((topGen‘ran (,)) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
481475, 480eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (0[,)π) ∈ ((TopOpen‘ℂfld) ↾t (0[,)+∞))
482 isopn3i 21684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) ∈ Top ∧ (0[,)π) ∈ ((TopOpen‘ℂfld) ↾t (0[,)+∞))) → ((int‘((TopOpen‘ℂfld) ↾t (0[,)+∞)))‘(0[,)π)) = (0[,)π))
483470, 481, 482mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((int‘((TopOpen‘ℂfld) ↾t (0[,)+∞)))‘(0[,)π)) = (0[,)π)
484 0ltpnf 12511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 0 < +∞
485 snunioo1 41781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → ((0(,)+∞) ∪ {0}) = (0[,)+∞))
486151, 374, 484, 485mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((0(,)+∞) ∪ {0}) = (0[,)+∞)
487486eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (0[,)+∞) = ((0(,)+∞) ∪ {0})
488487oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t ((0(,)+∞) ∪ {0}))
489488fveq2i 6667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (int‘((TopOpen‘ℂfld) ↾t (0[,)+∞))) = (int‘((TopOpen‘ℂfld) ↾t ((0(,)+∞) ∪ {0})))
490 snunioo1 41781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 < π) → ((0(,)π) ∪ {0}) = (0[,)π))
491151, 153, 68, 490mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((0(,)π) ∪ {0}) = (0[,)π)
492491eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (0[,)π) = ((0(,)π) ∪ {0})
493489, 492fveq12i 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((int‘((TopOpen‘ℂfld) ↾t (0[,)+∞)))‘(0[,)π)) = ((int‘((TopOpen‘ℂfld) ↾t ((0(,)+∞) ∪ {0})))‘((0(,)π) ∪ {0}))
494483, 493eqtr3i 2846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (0[,)π) = ((int‘((TopOpen‘ℂfld) ↾t ((0(,)+∞) ∪ {0})))‘((0(,)π) ∪ {0}))
495467, 494eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((0(,)+∞) ∪ {0})))‘((0(,)π) ∪ {0}))
496495a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⊤ → 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((0(,)+∞) ∪ {0})))‘((0(,)π) ∪ {0})))
497460, 461, 463, 198, 464, 496limcres 24478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (⊤ → (((𝐹 ↾ (0(,)+∞)) ↾ (0(,)π)) lim 0) = ((𝐹 ↾ (0(,)+∞)) lim 0))
498497mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐹 ↾ (0(,)+∞)) ↾ (0(,)π)) lim 0) = ((𝐹 ↾ (0(,)+∞)) lim 0)
499457, 498eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ (0(,)π) ↦ 1) lim 0) = ((𝐹 ↾ (0(,)+∞)) lim 0)
500447, 499eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → 1 ∈ ((𝐹 ↾ (0(,)+∞)) lim 0))
501 neg1lt0 11748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 -1 < 0
502106, 67, 105lttri 10760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
503501, 34, 502mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 -1 < 1
504106, 503ltneii 10747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 -1 ≠ 1
505504a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⊤ → -1 ≠ 1)
506198, 359, 360, 361, 362, 373, 384, 443, 500, 505jumpncnp 42174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⊤ → ¬ 𝐹 ∈ (((topGen‘ran (,)) CnP (TopOpen‘ℂfld))‘0))
507506mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ¬ 𝐹 ∈ (((topGen‘ran (,)) CnP (TopOpen‘ℂfld))‘0)
508206a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → ℝ ⊆ ℂ)
509208a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → 𝐹:ℝ⟶ℂ)
510205a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → ℝ ⊆ ℝ)
511 inss2 4205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((-π(,)π) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
512220, 511eqsstri 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ dom (ℝ D 𝐹)
513512sseli 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → 0 ∈ dom (ℝ D 𝐹))
514199, 198dvcnp2 24511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ 0 ∈ dom (ℝ D 𝐹)) → 𝐹 ∈ (((topGen‘ran (,)) CnP (TopOpen‘ℂfld))‘0))
515508, 509, 510, 513, 514syl31anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → 𝐹 ∈ (((topGen‘ran (,)) CnP (TopOpen‘ℂfld))‘0))
516507, 515mto 199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ¬ 0 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π))
517516a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → ¬ 0 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
518358, 517eqneltrd 2932 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 0 → ¬ 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
519518necon2ai 3045 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → 𝑥 ≠ 0)
520519adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ ¬ 𝑥 < 0) → 𝑥 ≠ 0)
521354, 355, 357, 520leneltd 10788 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ ¬ 𝑥 < 0) → 0 < 𝑥)
522344, 163sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 0 < 𝑥) → 𝑥 ∈ (0(,)π))
523 elun2 4152 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ((-π(,)0) ∪ (0(,)π)))
524522, 523syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ 0 < 𝑥) → 𝑥 ∈ ((-π(,)0) ∪ (0(,)π)))
525353, 521, 524syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ ¬ 𝑥 < 0) → 𝑥 ∈ ((-π(,)0) ∪ (0(,)π)))
526352, 525pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → 𝑥 ∈ ((-π(,)0) ∪ (0(,)π)))
527 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)0) ∈ V
528 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . 23 (0(,)π) ∈ V
529527, 528unipr 4844 . . . . . . . . . . . . . . . . . . . . . 22 {(-π(,)0), (0(,)π)} = ((-π(,)0) ∪ (0(,)π))
530526, 529eleqtrrdi 2924 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)) → 𝑥 {(-π(,)0), (0(,)π)})
531530ssriv 3970 . . . . . . . . . . . . . . . . . . . 20 dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ {(-π(,)0), (0(,)π)}
532531a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ {(-π(,)0), (0(,)π)})
533 ineq2 4182 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (-π(,)0) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) = (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (-π(,)0)))
534 retop 23364 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (topGen‘ran (,)) ∈ Top
535 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (ℝ D 𝐹) ∈ V
536535resex 5893 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ V
537536dmex 7610 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ V
538534, 537pm3.2i 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((topGen‘ran (,)) ∈ Top ∧ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ V)
539318ssriv 3970 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-π(,)0) ⊆ dom ((ℝ D 𝐹) ↾ (-π(,)π))
540 ssid 3988 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-π(,)0) ⊆ (-π(,)0)
541301, 539, 5403pm3.2i 1335 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π(,)0) ∈ (topGen‘ran (,)) ∧ (-π(,)0) ⊆ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ (-π(,)0) ⊆ (-π(,)0))
542 restopnb 21777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((topGen‘ran (,)) ∈ Top ∧ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ V) ∧ ((-π(,)0) ∈ (topGen‘ran (,)) ∧ (-π(,)0) ⊆ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ (-π(,)0) ⊆ (-π(,)0))) → ((-π(,)0) ∈ (topGen‘ran (,)) ↔ (-π(,)0) ∈ ((topGen‘ran (,)) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))))
543538, 541, 542mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π(,)0) ∈ (topGen‘ran (,)) ↔ (-π(,)0) ∈ ((topGen‘ran (,)) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
544301, 543mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)0) ∈ ((topGen‘ran (,)) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))
545 inss2 4205 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (-π(,)0)) ⊆ (-π(,)0)
546539, 540ssini 4207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)0) ⊆ (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (-π(,)0))
547545, 546eqssi 3982 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (-π(,)0)) = (-π(,)0)
548199oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((topGen‘ran (,)) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))
549331, 343sstri 3975 . . . . . . . . . . . . . . . . . . . . . . . . . 26 dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ ℝ
550 restabs 21767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((TopOpen‘ℂfld) ∈ Top ∧ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))) = ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
551408, 549, 420, 550mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((TopOpen‘ℂfld) ↾t ℝ) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))) = ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))
552548, 551eqtr2i 2845 . . . . . . . . . . . . . . . . . . . . . . . 24 ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))) = ((topGen‘ran (,)) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))
553544, 547, 5523eltr4i 2926 . . . . . . . . . . . . . . . . . . . . . . 23 (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (-π(,)0)) ∈ ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))
554533, 553eqeltrdi 2921 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (-π(,)0) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) ∈ ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
555554adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ {(-π(,)0), (0(,)π)} ∧ 𝑥 = (-π(,)0)) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) ∈ ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
556 neqne 3024 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 = (-π(,)0) → 𝑥 ≠ (-π(,)0))
557 elprn1 41907 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ {(-π(,)0), (0(,)π)} ∧ 𝑥 ≠ (-π(,)0)) → 𝑥 = (0(,)π))
558556, 557sylan2 594 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ {(-π(,)0), (0(,)π)} ∧ ¬ 𝑥 = (-π(,)0)) → 𝑥 = (0(,)π))
559 ineq2 4182 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (0(,)π) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) = (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (0(,)π)))
560221ssriv 3970 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0(,)π) ⊆ dom ((ℝ D 𝐹) ↾ (-π(,)π))
561 ssid 3988 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0(,)π) ⊆ (0(,)π)
562197, 560, 5613pm3.2i 1335 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0(,)π) ∈ (topGen‘ran (,)) ∧ (0(,)π) ⊆ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ (0(,)π) ⊆ (0(,)π))
563 restopnb 21777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((topGen‘ran (,)) ∈ Top ∧ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ V) ∧ ((0(,)π) ∈ (topGen‘ran (,)) ∧ (0(,)π) ⊆ dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∧ (0(,)π) ⊆ (0(,)π))) → ((0(,)π) ∈ (topGen‘ran (,)) ↔ (0(,)π) ∈ ((topGen‘ran (,)) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))))
564538, 562, 563mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0(,)π) ∈ (topGen‘ran (,)) ↔ (0(,)π) ∈ ((topGen‘ran (,)) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
565197, 564mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (0(,)π) ∈ ((topGen‘ran (,)) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))
566 inss2 4205 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (0(,)π)) ⊆ (0(,)π)
567560, 561ssini 4207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0(,)π) ⊆ (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (0(,)π))
568566, 567eqssi 3982 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (0(,)π)) = (0(,)π)
569565, 568, 5523eltr4i 2926 . . . . . . . . . . . . . . . . . . . . . . 23 (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ (0(,)π)) ∈ ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π)))
570559, 569eqeltrdi 2921 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (0(,)π) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) ∈ ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
571558, 570syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ {(-π(,)0), (0(,)π)} ∧ ¬ 𝑥 = (-π(,)0)) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) ∈ ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
572555, 571pm2.61dan 811 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {(-π(,)0), (0(,)π)} → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) ∈ ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
573572adantl 484 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ {(-π(,)0), (0(,)π)}) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) ∈ ((TopOpen‘ℂfld) ↾t dom ((ℝ D 𝐹) ↾ (-π(,)π))))
574 ssid 3988 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℂ ⊆ ℂ
575574a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → ℂ ⊆ ℂ)
576392, 393, 575constcncfg 42147 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → (𝑥 ∈ (-π(,)0) ↦ 0) ∈ ((-π(,)0)–cn→ℂ))
577576mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (-π(,)0) ↦ 0) ∈ ((-π(,)0)–cn→ℂ)
578577a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (-π(,)0) → (𝑥 ∈ (-π(,)0) ↦ 0) ∈ ((-π(,)0)–cn→ℂ))
579 reseq2 5842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (-π(,)0) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-π(,)0)))
580 resabs1 5877 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π(,)0) ⊆ (-π(,)π) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-π(,)0)) = ((ℝ D 𝐹) ↾ (-π(,)0)))
581238, 580ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-π(,)0)) = ((ℝ D 𝐹) ↾ (-π(,)0))
582581, 309eqtr4i 2847 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-π(,)0)) = (𝑥 ∈ (-π(,)0) ↦ 0)
583579, 582syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (-π(,)0) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) = (𝑥 ∈ (-π(,)0) ↦ 0))
584533, 547syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (-π(,)0) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) = (-π(,)0))
585584oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (-π(,)0) → ((dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥)–cn→ℂ) = ((-π(,)0)–cn→ℂ))
586578, 583, 5853eltr4d 2928 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (-π(,)0) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) ∈ ((dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥)–cn→ℂ))
587586adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ {(-π(,)0), (0(,)π)} ∧ 𝑥 = (-π(,)0)) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) ∈ ((dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥)–cn→ℂ))
588446, 393, 575constcncfg 42147 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → (𝑥 ∈ (0(,)π) ↦ 0) ∈ ((0(,)π)–cn→ℂ))
589588mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (0(,)π) ↦ 0) ∈ ((0(,)π)–cn→ℂ)
590589a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (0(,)π) → (𝑥 ∈ (0(,)π) ↦ 0) ∈ ((0(,)π)–cn→ℂ))
591 reseq2 5842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (0(,)π) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)π)))
592 resabs1 5877 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0(,)π) ⊆ (-π(,)π) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)π)) = ((ℝ D 𝐹) ↾ (0(,)π)))
593167, 592ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)π)) = ((ℝ D 𝐹) ↾ (0(,)π))
594593, 211eqtr4i 2847 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)π)) = (𝑥 ∈ (0(,)π) ↦ 0)
595591, 594syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (0(,)π) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) = (𝑥 ∈ (0(,)π) ↦ 0))
596559, 568syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (0(,)π) → (dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥) = (0(,)π))
597596oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (0(,)π) → ((dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥)–cn→ℂ) = ((0(,)π)–cn→ℂ))
598590, 595, 5973eltr4d 2928 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (0(,)π) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) ∈ ((dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥)–cn→ℂ))
599558, 598syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ {(-π(,)0), (0(,)π)} ∧ ¬ 𝑥 = (-π(,)0)) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) ∈ ((dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥)–cn→ℂ))
600587, 599pm2.61dan 811 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {(-π(,)0), (0(,)π)} → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) ∈ ((dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥)–cn→ℂ))
601600adantl 484 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ {(-π(,)0), (0(,)π)}) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ 𝑥) ∈ ((dom ((ℝ D 𝐹) ↾ (-π(,)π)) ∩ 𝑥)–cn→ℂ))
602334, 340, 532, 573, 601cncfuni 42162 . . . . . . . . . . . . . . . . . 18 (⊤ → ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ (dom ((ℝ D 𝐹) ↾ (-π(,)π))–cn→ℂ))
603602mptru 1540 . . . . . . . . . . . . . . . . 17 ((ℝ D 𝐹) ↾ (-π(,)π)) ∈ (dom ((ℝ D 𝐹) ↾ (-π(,)π))–cn→ℂ)
604 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = -π → (𝑥(,)+∞) = (-π(,)+∞))
605604reseq2d 5847 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = -π → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-π(,)+∞)))
606 iooss2 12768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((+∞ ∈ ℝ* ∧ π ≤ +∞) → (-π(,)π) ⊆ (-π(,)+∞))
607374, 451, 606mp2an 690 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)π) ⊆ (-π(,)+∞)
608 resabs2 5879 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π(,)π) ⊆ (-π(,)+∞) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-π(,)+∞)) = ((ℝ D 𝐹) ↾ (-π(,)π)))
609607, 608ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-π(,)+∞)) = ((ℝ D 𝐹) ↾ (-π(,)π))
610605, 609syl6eq 2872 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = -π → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = ((ℝ D 𝐹) ↾ (-π(,)π)))
611 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = -π → 𝑥 = -π)
612610, 611oveq12d 7168 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = -π → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) lim 𝑥) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim -π))
613252a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → -π ∈ ℂ)
614311, 392, 393, 613constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → 0 ∈ ((𝑥 ∈ (-π(,)0) ↦ 0) lim -π))
615614mptru 1540 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ((𝑥 ∈ (-π(,)0) ↦ 0) lim -π)
616309oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (-π(,)0) ↦ 0) lim -π) = (((ℝ D 𝐹) ↾ (-π(,)0)) lim -π)
617335a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
618158a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → -π ∈ ℝ)
619151a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → 0 ∈ ℝ*)
620164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → -π < 0)
621315a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → (-π(,)0) ⊆ dom (ℝ D 𝐹))
622236a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → 0 ≤ π)
623617, 618, 619, 620, 621, 471, 622limcresioolb 41917 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → (((ℝ D 𝐹) ↾ (-π(,)0)) lim -π) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim -π))
624623mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹) ↾ (-π(,)0)) lim -π) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim -π)
625616, 624eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (-π(,)0) ↦ 0) lim -π) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim -π)
626615, 625eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (((ℝ D 𝐹) ↾ (-π(,)π)) lim -π)
627626ne0ii 4302 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝐹) ↾ (-π(,)π)) lim -π) ≠ ∅
628627a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = -π → (((ℝ D 𝐹) ↾ (-π(,)π)) lim -π) ≠ ∅)
629612, 628eqnetrd 3083 . . . . . . . . . . . . . . . . . . 19 (𝑥 = -π → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
630629adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((-π[,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ 𝑥 = -π) → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
631 eldifi 4102 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-π[,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → 𝑥 ∈ (-π[,)π))
632159a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → -π ∈ ℝ*)
633153a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → π ∈ ℝ*)
634 icossre 12811 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ π ∈ ℝ*) → (-π[,)π) ⊆ ℝ)
635158, 153, 634mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,)π) ⊆ ℝ
636635sseli 3962 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π[,)π) → 𝑥 ∈ ℝ)
637636adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → 𝑥 ∈ ℝ)
638158a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → -π ∈ ℝ)
639 icogelb 12782 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (-π[,)π)) → -π ≤ 𝑥)
640159, 153, 639mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (-π[,)π) → -π ≤ 𝑥)
641640adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → -π ≤ 𝑥)
642 neqne 3024 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 = -π → 𝑥 ≠ -π)
643642adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → 𝑥 ≠ -π)
644638, 637, 641, 643leneltd 10788 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → -π < 𝑥)
645 icoltub 41777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (-π[,)π)) → 𝑥 < π)
646159, 153, 645mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π[,)π) → 𝑥 < π)
647646adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → 𝑥 < π)
648632, 633, 637, 644, 647eliood 41766 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (-π[,)π) ∧ ¬ 𝑥 = -π) → 𝑥 ∈ (-π(,)π))
649631, 648sylan 582 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ((-π[,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = -π) → 𝑥 ∈ (-π(,)π))
650 eldifn 4103 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-π[,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → ¬ 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
651650adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ((-π[,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = -π) → ¬ 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
652649, 651eldifd 3946 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ((-π[,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = -π) → 𝑥 ∈ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))))
653 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 0 → (𝑥(,)+∞) = (0(,)+∞))
654653reseq2d 5847 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)+∞)))
655654, 358oveq12d 7168 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) lim 𝑥) = ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)+∞)) lim 0))
656213, 446, 393, 393constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → 0 ∈ ((𝑥 ∈ (0(,)π) ↦ 0) lim 0))
657656mptru 1540 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ((𝑥 ∈ (0(,)π) ↦ 0) lim 0)
658 resres 5860 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)+∞)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (0(,)+∞)))
659 iooin 12766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((-π ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ∈ ℝ* ∧ +∞ ∈ ℝ*)) → ((-π(,)π) ∩ (0(,)+∞)) = (if(-π ≤ 0, 0, -π)(,)if(π ≤ +∞, π, +∞)))
660159, 153, 151, 374, 659mp4an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π(,)π) ∩ (0(,)+∞)) = (if(-π ≤ 0, 0, -π)(,)if(π ≤ +∞, π, +∞))
661165iftruei 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 if(-π ≤ 0, 0, -π) = 0
662451iftruei 4473 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 if(π ≤ +∞, π, +∞) = π
663661, 662oveq12i 7162 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (if(-π ≤ 0, 0, -π)(,)if(π ≤ +∞, π, +∞)) = (0(,)π)
664660, 663eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π(,)π) ∩ (0(,)+∞)) = (0(,)π)
665664reseq2i 5844 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (0(,)+∞))) = ((ℝ D 𝐹) ↾ (0(,)π))
666211eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ D 𝐹) ↾ (0(,)π)) = (𝑥 ∈ (0(,)π) ↦ 0)
667658, 665, 6663eqtrri 2849 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (0(,)π) ↦ 0) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)+∞))
668667oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (0(,)π) ↦ 0) lim 0) = ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)+∞)) lim 0)
669657, 668eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)+∞)) lim 0)
670669ne0ii 4302 . . . . . . . . . . . . . . . . . . . . 21 ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)+∞)) lim 0) ≠ ∅
671670a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (0(,)+∞)) lim 0) ≠ ∅)
672655, 671eqnetrd 3083 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
673652, 324, 6723syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((-π[,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = -π) → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
674630, 673pm2.61dan 811 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π[,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)
675 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = π → (-∞(,)𝑥) = (-∞(,)π))
676675reseq2d 5847 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = π → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)π)))
677 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = π → 𝑥 = π)
678676, 677oveq12d 7168 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = π → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) lim 𝑥) = ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)π)) lim π))
679 iooss1 12767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-∞ ∈ ℝ* ∧ -∞ ≤ -π) → (-π(,)π) ⊆ (-∞(,)π))
680363, 387, 679mp2an 690 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)π) ⊆ (-∞(,)π)
681 resabs2 5879 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π(,)π) ⊆ (-∞(,)π) → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)π)) = ((ℝ D 𝐹) ↾ (-π(,)π)))
682680, 681ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)π)) = ((ℝ D 𝐹) ↾ (-π(,)π))
683682oveq1i 7160 . . . . . . . . . . . . . . . . . . . . 21 ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)π)) lim π) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim π)
684678, 683syl6eq 2872 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = π → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) lim 𝑥) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim π))
685213, 446, 393, 53constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → 0 ∈ ((𝑥 ∈ (0(,)π) ↦ 0) lim π))
686685mptru 1540 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ((𝑥 ∈ (0(,)π) ↦ 0) lim π)
687211oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0(,)π) ↦ 0) lim π) = (((ℝ D 𝐹) ↾ (0(,)π)) lim π)
688118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → π ∈ ℝ)
68968a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → 0 < π)
690217a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → (0(,)π) ⊆ dom (ℝ D 𝐹))
691165a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → -π ≤ 0)
692617, 619, 688, 689, 690, 412, 691limcresiooub 41916 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → (((ℝ D 𝐹) ↾ (0(,)π)) lim π) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim π))
693692mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℝ D 𝐹) ↾ (0(,)π)) lim π) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim π)
694687, 693eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (0(,)π) ↦ 0) lim π) = (((ℝ D 𝐹) ↾ (-π(,)π)) lim π)
695686, 694eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (((ℝ D 𝐹) ↾ (-π(,)π)) lim π)
696695ne0ii 4302 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝐹) ↾ (-π(,)π)) lim π) ≠ ∅
697696a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = π → (((ℝ D 𝐹) ↾ (-π(,)π)) lim π) ≠ ∅)
698684, 697eqnetrd 3083 . . . . . . . . . . . . . . . . . . 19 (𝑥 = π → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
699698adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ 𝑥 = π) → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
700159a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → -π ∈ ℝ*)
701153a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → π ∈ ℝ*)
702 negpitopissre 25118 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,]π) ⊆ ℝ
703 eldifi 4102 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → 𝑥 ∈ (-π(,]π))
704702, 703sseldi 3964 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → 𝑥 ∈ ℝ)
705704adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → 𝑥 ∈ ℝ)
706159a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → -π ∈ ℝ*)
707153a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → π ∈ ℝ*)
708 iocgtlb 41770 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (-π(,]π)) → -π < 𝑥)
709706, 707, 703, 708syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → -π < 𝑥)
710709adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → -π < 𝑥)
711118a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → π ∈ ℝ)
712 iocleub 41771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑥 ∈ (-π(,]π)) → 𝑥 ≤ π)
713706, 707, 703, 712syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → 𝑥 ≤ π)
714713adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → 𝑥 ≤ π)
715 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π = 𝑥 → π = 𝑥)
716715eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . 24 (π = 𝑥𝑥 = π)
717716necon3bi 3042 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 = π → π ≠ 𝑥)
718717adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → π ≠ 𝑥)
719705, 711, 714, 718leneltd 10788 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → 𝑥 < π)
720700, 701, 705, 710, 719eliood 41766 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → 𝑥 ∈ (-π(,)π))
721 eldifn 4103 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → ¬ 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
722721adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → ¬ 𝑥 ∈ dom ((ℝ D 𝐹) ↾ (-π(,)π)))
723720, 722eldifd 3946 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → 𝑥 ∈ ((-π(,)π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))))
724 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 0 → (-∞(,)𝑥) = (-∞(,)0))
725724reseq2d 5847 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)0)))
726725, 358oveq12d 7168 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) lim 𝑥) = ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)0)) lim 0))
727311, 392, 393, 393constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → 0 ∈ ((𝑥 ∈ (-π(,)0) ↦ 0) lim 0))
728727mptru 1540 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ((𝑥 ∈ (-π(,)0) ↦ 0) lim 0)
729 resres 5860 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)0)) = ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)0)))
730 iooin 12766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((-π ∈ ℝ* ∧ π ∈ ℝ*) ∧ (-∞ ∈ ℝ* ∧ 0 ∈ ℝ*)) → ((-π(,)π) ∩ (-∞(,)0)) = (if(-π ≤ -∞, -∞, -π)(,)if(π ≤ 0, π, 0)))
731159, 153, 363, 151, 730mp4an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π(,)π) ∩ (-∞(,)0)) = (if(-π ≤ -∞, -∞, -π)(,)if(π ≤ 0, π, 0))
732 mnflt 12512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (-π ∈ ℝ → -∞ < -π)
733158, 732ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 -∞ < -π
734 xrltnle 10702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-∞ ∈ ℝ* ∧ -π ∈ ℝ*) → (-∞ < -π ↔ ¬ -π ≤ -∞))
735363, 159, 734mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-∞ < -π ↔ ¬ -π ≤ -∞)
736733, 735mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ¬ -π ≤ -∞
737736iffalsei 4476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 if(-π ≤ -∞, -∞, -π) = -π
738 xrltnle 10702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (0 < π ↔ ¬ π ≤ 0))
739151, 153, 738mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0 < π ↔ ¬ π ≤ 0)
74068, 739mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ¬ π ≤ 0
741740iffalsei 4476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 if(π ≤ 0, π, 0) = 0
742737, 741oveq12i 7162 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (if(-π ≤ -∞, -∞, -π)(,)if(π ≤ 0, π, 0)) = (-π(,)0)
743731, 742eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π(,)π) ∩ (-∞(,)0)) = (-π(,)0)
744743reseq2i 5844 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ D 𝐹) ↾ ((-π(,)π) ∩ (-∞(,)0))) = ((ℝ D 𝐹) ↾ (-π(,)0))
745309eqcomi 2830 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℝ D 𝐹) ↾ (-π(,)0)) = (𝑥 ∈ (-π(,)0) ↦ 0)
746729, 744, 7453eqtrri 2849 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (-π(,)0) ↦ 0) = (((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)0))
747746oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (-π(,)0) ↦ 0) lim 0) = ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)0)) lim 0)
748728, 747eleqtri 2911 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)0)) lim 0)
749748ne0ii 4302 . . . . . . . . . . . . . . . . . . . . 21 ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)0)) lim 0) ≠ ∅
750749a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)0)) lim 0) ≠ ∅)
751726, 750eqnetrd 3083 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
752723, 324, 7513syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) ∧ ¬ 𝑥 = π) → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
753699, 752pm2.61dan 811 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,]π) ∖ dom ((ℝ D 𝐹) ↾ (-π(,)π))) → ((((ℝ D 𝐹) ↾ (-π(,)π)) ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)
754 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ 1) = (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ 1)
755 ioosscn 41762 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℂ
756755a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0(,)π) → ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℂ)
757 1cnd 10630 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0(,)π) → 1 ∈ ℂ)
75823a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0(,)π) → 𝑋 ∈ ℂ)
759754, 756, 757, 758constlimc 41898 . . . . . . . . . . . . . . . . . . 19 ((𝑋 mod 𝑇) ∈ (0(,)π) → 1 ∈ ((𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ 1) lim 𝑋))
760 ioossioc 41759 . . . . . . . . . . . . . . . . . . . . 21 (0(,)π) ⊆ (0(,]π)
761760sseli 3962 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0(,)π) → (𝑋 mod 𝑇) ∈ (0(,]π))
762761iftrued 4474 . . . . . . . . . . . . . . . . . . 19 ((𝑋 mod 𝑇) ∈ (0(,)π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
763208a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0(,)π) → 𝐹:ℝ⟶ℂ)
764 modcl 13235 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (𝑋 mod 𝑇) ∈ ℝ)
76522, 133, 764mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 mod 𝑇) ∈ ℝ
76622, 765resubcli 10942 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋 − (𝑋 mod 𝑇)) ∈ ℝ
767766rexri 10693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 − (𝑋 mod 𝑇)) ∈ ℝ*
768767a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0(,)π) → (𝑋 − (𝑋 mod 𝑇)) ∈ ℝ*)
76922a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0(,)π) → 𝑋 ∈ ℝ)
770 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (0(,)π) → (𝑋 mod 𝑇) ∈ ℝ)
771 ioogtlb 41763 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,)π)) → 0 < (𝑋 mod 𝑇))
772151, 153, 771mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (0(,)π) → 0 < (𝑋 mod 𝑇))
773770, 772elrpd 12422 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (0(,)π) → (𝑋 mod 𝑇) ∈ ℝ+)
774769, 773ltsubrpd 12457 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0(,)π) → (𝑋 − (𝑋 mod 𝑇)) < 𝑋)
775 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℝ
776775a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0(,)π) → ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℝ)
777363a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0(,)π) → -∞ ∈ ℝ*)
778 mnflt 12512 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 − (𝑋 mod 𝑇)) ∈ ℝ → -∞ < (𝑋 − (𝑋 mod 𝑇)))
779 xrltle 12536 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-∞ ∈ ℝ* ∧ (𝑋 − (𝑋 mod 𝑇)) ∈ ℝ*) → (-∞ < (𝑋 − (𝑋 mod 𝑇)) → -∞ ≤ (𝑋 − (𝑋 mod 𝑇))))
780363, 767, 779mp2an 690 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞ < (𝑋 − (𝑋 mod 𝑇)) → -∞ ≤ (𝑋 − (𝑋 mod 𝑇)))
781766, 778, 780mp2b 10 . . . . . . . . . . . . . . . . . . . . . 22 -∞ ≤ (𝑋 − (𝑋 mod 𝑇))
782781a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0(,)π) → -∞ ≤ (𝑋 − (𝑋 mod 𝑇)))
783763, 768, 769, 774, 776, 777, 782limcresiooub 41916 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0(,)π) → ((𝐹 ↾ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
784 iooltub 41779 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0(,)π)) → (𝑋 mod 𝑇) < π)
785151, 153, 784mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (0(,)π) → (𝑋 mod 𝑇) < π)
786208a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) < π → 𝐹:ℝ⟶ℂ)
787775a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) < π → ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℝ)
788786, 787feqresmpt 6728 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) < π → (𝐹 ↾ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) = (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ (𝐹𝑥)))
789 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) → 𝑥 ∈ ℝ)
790789, 107, 145sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
791790adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
792789adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → 𝑥 ∈ ℝ)
793133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → 𝑇 ∈ ℝ+)
794792, 793modcld 13237 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → (𝑥 mod 𝑇) ∈ ℝ)
795765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → (𝑋 mod 𝑇) ∈ ℝ)
796118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → π ∈ ℝ)
79722a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) → 𝑋 ∈ ℝ)
798133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) → 𝑇 ∈ ℝ+)
799 ioossico 12820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ⊆ ((𝑋 − (𝑋 mod 𝑇))[,)𝑋)
800799sseli 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) → 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))[,)𝑋))
801797, 798, 800ltmod 41912 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) → (𝑥 mod 𝑇) < (𝑋 mod 𝑇))
802801adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → (𝑥 mod 𝑇) < (𝑋 mod 𝑇))
803 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → (𝑋 mod 𝑇) < π)
804794, 795, 796, 802, 803lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → (𝑥 mod 𝑇) < π)
805804iftrued 4474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
806791, 805eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) → (𝐹𝑥) = 1)
807806mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) < π → (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ (𝐹𝑥)) = (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ 1))
808788, 807eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) < π → (𝐹 ↾ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) = (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ 1))
809785, 808syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0(,)π) → (𝐹 ↾ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) = (𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ 1))
810809oveq1d 7165 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0(,)π) → ((𝐹 ↾ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋)) lim 𝑋) = ((𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ 1) lim 𝑋))
811783, 810eqtr3d 2858 . . . . . . . . . . . . . . . . . . 19 ((𝑋 mod 𝑇) ∈ (0(,)π) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋) ↦ 1) lim 𝑋))
812759, 762, 8113eltr4d 2928 . . . . . . . . . . . . . . . . . 18 ((𝑋 mod 𝑇) ∈ (0(,)π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
813 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1) = (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1)
814 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 − π)(,)𝑋) ⊆ ℝ
815814a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → ((𝑋 − π)(,)𝑋) ⊆ ℝ)
816815, 206sstrdi 3978 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝑋 − π)(,)𝑋) ⊆ ℂ)
81723a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → 𝑋 ∈ ℂ)
818813, 816, 304, 817constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → -1 ∈ ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1) lim 𝑋))
819818mptru 1540 . . . . . . . . . . . . . . . . . . . . . 22 -1 ∈ ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1) lim 𝑋)
820819a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) = 0 → -1 ∈ ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1) lim 𝑋))
821 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) = 0 → (𝑋 mod 𝑇) = 0)
822 lbioc 41782 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 0 ∈ (0(,]π)
823822a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) = 0 → ¬ 0 ∈ (0(,]π))
824821, 823eqneltrd 2932 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) = 0 → ¬ (𝑋 mod 𝑇) ∈ (0(,]π))
825824iffalsed 4477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = -1)
826208a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) = 0 → 𝐹:ℝ⟶ℂ)
827814a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) = 0 → ((𝑋 − π)(,)𝑋) ⊆ ℝ)
828826, 827feqresmpt 6728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) = 0 → (𝐹 ↾ ((𝑋 − π)(,)𝑋)) = (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ (𝐹𝑥)))
829827sselda 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → 𝑥 ∈ ℝ)
830829, 107, 145sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
831118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → π ∈ ℝ)
832133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → 𝑇 ∈ ℝ+)
833829, 832modcld 13237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝑥 mod 𝑇) ∈ ℝ)
83422, 118resubcli 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑋 − π) ∈ ℝ
835834a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (𝑋 − π) ∈ ℝ)
836120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 𝑇 ∈ ℝ)
837835, 836readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((𝑋 − π) + 𝑇) ∈ ℝ)
838 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 𝑥 ∈ ℝ)
839838, 836readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (𝑥 + 𝑇) ∈ ℝ)
84022a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 𝑋 ∈ ℝ)
841834rexri 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑋 − π) ∈ ℝ*
842841a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (𝑋 − π) ∈ ℝ*)
843840rexrd 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 𝑋 ∈ ℝ*)
844 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 𝑥 ∈ ((𝑋 − π)(,)𝑋))
845 ioogtlb 41763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑋 − π) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝑋 − π) < 𝑥)
846842, 843, 844, 845syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (𝑋 − π) < 𝑥)
847835, 838, 836, 846ltadd1dd 11245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((𝑋 − π) + 𝑇) < (𝑥 + 𝑇))
848837, 839, 840, 847ltsub1dd 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (((𝑋 − π) + 𝑇) − 𝑋) < ((𝑥 + 𝑇) − 𝑋))
849848adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (((𝑋 − π) + 𝑇) − 𝑋) < ((𝑥 + 𝑇) − 𝑋))
850250oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑋 − π) + 𝑇) = ((𝑋 − π) + (π + π))
85152, 52addcli 10641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (π + π) ∈ ℂ
852 subadd23 10892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑋 ∈ ℂ ∧ π ∈ ℂ ∧ (π + π) ∈ ℂ) → ((𝑋 − π) + (π + π)) = (𝑋 + ((π + π) − π)))
85323, 52, 851, 852mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑋 − π) + (π + π)) = (𝑋 + ((π + π) − π))
85452, 52pncan3oi 10896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((π + π) − π) = π
855854oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑋 + ((π + π) − π)) = (𝑋 + π)
856850, 853, 8553eqtri 2848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑋 − π) + 𝑇) = (𝑋 + π)
857856oveq1i 7160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑋 − π) + 𝑇) − 𝑋) = ((𝑋 + π) − 𝑋)
858 pncan2 10887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑋 ∈ ℂ ∧ π ∈ ℂ) → ((𝑋 + π) − 𝑋) = π)
85923, 52, 858mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑋 + π) − 𝑋) = π
860857, 859eqtr2i 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 π = (((𝑋 − π) + 𝑇) − 𝑋)
861860a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → π = (((𝑋 − π) + 𝑇) − 𝑋))
862839, 840resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((𝑥 + 𝑇) − 𝑋) ∈ ℝ)
863 modabs2 13267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝑥 + 𝑇) − 𝑋) ∈ ℝ ∧ 𝑇 ∈ ℝ+) → ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) mod 𝑇) = (((𝑥 + 𝑇) − 𝑋) mod 𝑇))
864862, 133, 863sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) mod 𝑇) = (((𝑥 + 𝑇) − 𝑋) mod 𝑇))
865133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 𝑇 ∈ ℝ+)
866 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 0 ∈ ℝ)
867837, 840resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (((𝑋 − π) + 𝑇) − 𝑋) ∈ ℝ)
86868, 860breqtri 5083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 < (((𝑋 − π) + 𝑇) − 𝑋)
869868a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 0 < (((𝑋 − π) + 𝑇) − 𝑋))
870866, 867, 862, 869, 848lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 0 < ((𝑥 + 𝑇) − 𝑋))
871866, 862, 870ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 0 ≤ ((𝑥 + 𝑇) − 𝑋))
872840, 836readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (𝑋 + 𝑇) ∈ ℝ)
873 iooltub 41779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑋 − π) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ ((𝑋 − π)(,)𝑋)) → 𝑥 < 𝑋)
874842, 843, 844, 873syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → 𝑥 < 𝑋)
875838, 840, 836, 874ltadd1dd 11245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (𝑥 + 𝑇) < (𝑋 + 𝑇))
876839, 872, 840, 875ltsub1dd 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((𝑥 + 𝑇) − 𝑋) < ((𝑋 + 𝑇) − 𝑋))
877 pncan2 10887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑋 ∈ ℂ ∧ 𝑇 ∈ ℂ) → ((𝑋 + 𝑇) − 𝑋) = 𝑇)
87823, 121, 877mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑋 + 𝑇) − 𝑋) = 𝑇
879876, 878breqtrdi 5099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((𝑥 + 𝑇) − 𝑋) < 𝑇)
880 modid 13258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑥 + 𝑇) − 𝑋) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ ((𝑥 + 𝑇) − 𝑋) ∧ ((𝑥 + 𝑇) − 𝑋) < 𝑇)) → (((𝑥 + 𝑇) − 𝑋) mod 𝑇) = ((𝑥 + 𝑇) − 𝑋))
881862, 865, 871, 879, 880syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (((𝑥 + 𝑇) − 𝑋) mod 𝑇) = ((𝑥 + 𝑇) − 𝑋))
882864, 881eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((𝑥 + 𝑇) − 𝑋) = ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) mod 𝑇))
883882adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ((𝑥 + 𝑇) − 𝑋) = ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) mod 𝑇))
884 oveq2 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑋 mod 𝑇) = 0 → ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + (𝑋 mod 𝑇)) = ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + 0))
885884adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + (𝑋 mod 𝑇)) = ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + 0))
886862, 865modcld 13237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (((𝑥 + 𝑇) − 𝑋) mod 𝑇) ∈ ℝ)
887886recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (((𝑥 + 𝑇) − 𝑋) mod 𝑇) ∈ ℂ)
888887addid1d 10834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + 0) = (((𝑥 + 𝑇) − 𝑋) mod 𝑇))
889888adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + 0) = (((𝑥 + 𝑇) − 𝑋) mod 𝑇))
890885, 889eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (((𝑥 + 𝑇) − 𝑋) mod 𝑇) = ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + (𝑋 mod 𝑇)))
891890oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ((((𝑥 + 𝑇) − 𝑋) mod 𝑇) mod 𝑇) = (((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + (𝑋 mod 𝑇)) mod 𝑇))
892 modaddabs 13271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑥 + 𝑇) − 𝑋) ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + (𝑋 mod 𝑇)) mod 𝑇) = ((((𝑥 + 𝑇) − 𝑋) + 𝑋) mod 𝑇))
893862, 840, 865, 892syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + (𝑋 mod 𝑇)) mod 𝑇) = ((((𝑥 + 𝑇) − 𝑋) + 𝑋) mod 𝑇))
894893adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (((((𝑥 + 𝑇) − 𝑋) mod 𝑇) + (𝑋 mod 𝑇)) mod 𝑇) = ((((𝑥 + 𝑇) − 𝑋) + 𝑋) mod 𝑇))
895883, 891, 8943eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ((𝑥 + 𝑇) − 𝑋) = ((((𝑥 + 𝑇) − 𝑋) + 𝑋) mod 𝑇))
896143recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ ℝ → (𝑥 + 𝑇) ∈ ℂ)
89723a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ ℝ → 𝑋 ∈ ℂ)
898896, 897npcand 10995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ℝ → (((𝑥 + 𝑇) − 𝑋) + 𝑋) = (𝑥 + 𝑇))
899122a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ ℝ → (1 · 𝑇) = 𝑇)
900899oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ ℝ → (𝑥 + (1 · 𝑇)) = (𝑥 + 𝑇))
901898, 900eqtr4d 2859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ℝ → (((𝑥 + 𝑇) − 𝑋) + 𝑋) = (𝑥 + (1 · 𝑇)))
902901oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ ℝ → ((((𝑥 + 𝑇) − 𝑋) + 𝑋) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇))
903838, 902syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → ((((𝑥 + 𝑇) − 𝑋) + 𝑋) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇))
904903adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ((((𝑥 + 𝑇) − 𝑋) + 𝑋) mod 𝑇) = ((𝑥 + (1 · 𝑇)) mod 𝑇))
905 1zzd 12007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → 1 ∈ ℤ)
906829, 832, 905, 136syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ((𝑥 + (1 · 𝑇)) mod 𝑇) = (𝑥 mod 𝑇))
907895, 904, 9063eqtrrd 2861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝑥 mod 𝑇) = ((𝑥 + 𝑇) − 𝑋))
908849, 861, 9073brtr4d 5090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → π < (𝑥 mod 𝑇))
909831, 833, 908ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → π ≤ (𝑥 mod 𝑇))
910831, 833, 909lensymd 10785 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ¬ (𝑥 mod 𝑇) < π)
911910iffalsed 4477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
912830, 911eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 mod 𝑇) = 0 ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝐹𝑥) = -1)
913912mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) = 0 → (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ (𝐹𝑥)) = (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1))
914828, 913eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) = 0 → (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1) = (𝐹 ↾ ((𝑋 − π)(,)𝑋)))
915914oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) = 0 → ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1) lim 𝑋) = ((𝐹 ↾ ((𝑋 − π)(,)𝑋)) lim 𝑋))
916841a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑋 − π) ∈ ℝ*)
91722a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → 𝑋 ∈ ℝ)
918 ltsubrp 12419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 ∈ ℝ ∧ π ∈ ℝ+) → (𝑋 − π) < 𝑋)
91922, 182, 918mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋 − π) < 𝑋
920919a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑋 − π) < 𝑋)
921 mnflt 12512 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 − π) ∈ ℝ → -∞ < (𝑋 − π))
922 xrltle 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-∞ ∈ ℝ* ∧ (𝑋 − π) ∈ ℝ*) → (-∞ < (𝑋 − π) → -∞ ≤ (𝑋 − π)))
923363, 841, 922mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-∞ < (𝑋 − π) → -∞ ≤ (𝑋 − π))
924834, 921, 923mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . 25 -∞ ≤ (𝑋 − π)
925924a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → -∞ ≤ (𝑋 − π))
926361, 916, 917, 920, 815, 364, 925limcresiooub 41916 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐹 ↾ ((𝑋 − π)(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
927926mptru 1540 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ↾ ((𝑋 − π)(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)
928915, 927syl6req 2873 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) = 0 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ -1) lim 𝑋))
929820, 825, 9283eltr4d 2928 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) = 0 → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
930929adantl 484 . . . . . . . . . . . . . . . . . . 19 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ (𝑋 mod 𝑇) = 0) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
931153a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈ ℝ*)
932120rexri 10693 . . . . . . . . . . . . . . . . . . . . . 22 𝑇 ∈ ℝ*
933932a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → 𝑇 ∈ ℝ*)
934765rexri 10693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 mod 𝑇) ∈ ℝ*
935934a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ ℝ*)
936118a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ∈ ℝ)
937765a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ ℝ)
938 pm4.56 985 . . . . . . . . . . . . . . . . . . . . . . . 24 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) ↔ ¬ ((𝑋 mod 𝑇) ∈ (0(,)π) ∨ (𝑋 mod 𝑇) = 0))
939938biimpi 218 . . . . . . . . . . . . . . . . . . . . . . 23 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ ((𝑋 mod 𝑇) ∈ (0(,)π) ∨ (𝑋 mod 𝑇) = 0))
940 olc 864 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) = 0 → ((𝑋 mod 𝑇) ∈ (0(,)π) ∨ (𝑋 mod 𝑇) = 0))
941940adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) < π ∧ (𝑋 mod 𝑇) = 0) → ((𝑋 mod 𝑇) ∈ (0(,)π) ∨ (𝑋 mod 𝑇) = 0))
942151a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) < π ∧ (𝑋 mod 𝑇) ≠ 0) → 0 ∈ ℝ*)
943153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) < π ∧ (𝑋 mod 𝑇) ≠ 0) → π ∈ ℝ*)
944765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) < π ∧ (𝑋 mod 𝑇) ≠ 0) → (𝑋 mod 𝑇) ∈ ℝ)
945 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋 mod 𝑇) ≠ 0 → 0 ∈ ℝ)
946765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋 mod 𝑇) ≠ 0 → (𝑋 mod 𝑇) ∈ ℝ)
947 modge0 13241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → 0 ≤ (𝑋 mod 𝑇))
94822, 133, 947mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ≤ (𝑋 mod 𝑇)
949948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋 mod 𝑇) ≠ 0 → 0 ≤ (𝑋 mod 𝑇))
950 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋 mod 𝑇) ≠ 0 → (𝑋 mod 𝑇) ≠ 0)
951945, 946, 949, 950leneltd 10788 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑋 mod 𝑇) ≠ 0 → 0 < (𝑋 mod 𝑇))
952951adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) < π ∧ (𝑋 mod 𝑇) ≠ 0) → 0 < (𝑋 mod 𝑇))
953 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) < π ∧ (𝑋 mod 𝑇) ≠ 0) → (𝑋 mod 𝑇) < π)
954942, 943, 944, 952, 953eliood 41766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 mod 𝑇) < π ∧ (𝑋 mod 𝑇) ≠ 0) → (𝑋 mod 𝑇) ∈ (0(,)π))
955954orcd 869 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) < π ∧ (𝑋 mod 𝑇) ≠ 0) → ((𝑋 mod 𝑇) ∈ (0(,)π) ∨ (𝑋 mod 𝑇) = 0))
956941, 955pm2.61dane 3104 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) < π → ((𝑋 mod 𝑇) ∈ (0(,)π) ∨ (𝑋 mod 𝑇) = 0))
957939, 956nsyl 142 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → ¬ (𝑋 mod 𝑇) < π)
958936, 937, 957nltled 10784 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → π ≤ (𝑋 mod 𝑇))
959 modlt 13242 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (𝑋 mod 𝑇) < 𝑇)
96022, 133, 959mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 mod 𝑇) < 𝑇
961960a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) < 𝑇)
962931, 933, 935, 958, 961elicod 12781 . . . . . . . . . . . . . . . . . . . 20 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → (𝑋 mod 𝑇) ∈ (π[,)𝑇))
963 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1) = (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1)
964963, 816, 202, 817constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → 1 ∈ ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1) lim 𝑋))
965964mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1) lim 𝑋)
966965a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) = π → 1 ∈ ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1) lim 𝑋))
967 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) = π)
968 ubioc1 12784 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 < π) → π ∈ (0(,]π))
969151, 153, 68, 968mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . 25 π ∈ (0(,]π)
970967, 969eqeltrdi 2921 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ∈ (0(,]π))
971970iftrued 4474 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = 1)
972361, 815feqresmpt 6728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → (𝐹 ↾ ((𝑋 − π)(,)𝑋)) = (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ (𝐹𝑥)))
973972mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ↾ ((𝑋 − π)(,)𝑋)) = (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ (𝐹𝑥))
974838, 107, 145sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ((𝑋 − π)(,)𝑋) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
975974adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
976 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → 𝑥 ∈ ((𝑋 − π)(,)𝑋))
977967eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑋 mod 𝑇) = π → π = (𝑋 mod 𝑇))
978977oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑋 mod 𝑇) = π → (𝑋 − π) = (𝑋 − (𝑋 mod 𝑇)))
979978oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑋 mod 𝑇) = π → ((𝑋 − π)(,)𝑋) = ((𝑋 − (𝑋 mod 𝑇))(,)𝑋))
980979adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → ((𝑋 − π)(,)𝑋) = ((𝑋 − (𝑋 mod 𝑇))(,)𝑋))
981976, 980eleqtrd 2915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → 𝑥 ∈ ((𝑋 − (𝑋 mod 𝑇))(,)𝑋))
982981, 801syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝑥 mod 𝑇) < (𝑋 mod 𝑇))
983 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝑋 mod 𝑇) = π)
984982, 983breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝑥 mod 𝑇) < π)
985984iftrued 4474 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
986975, 985eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) = π ∧ 𝑥 ∈ ((𝑋 − π)(,)𝑋)) → (𝐹𝑥) = 1)
987986mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 mod 𝑇) = π → (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ (𝐹𝑥)) = (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1))
988973, 987syl5req 2869 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) = π → (𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1) = (𝐹 ↾ ((𝑋 − π)(,)𝑋)))
989988oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) = π → ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1) lim 𝑋) = ((𝐹 ↾ ((𝑋 − π)(,)𝑋)) lim 𝑋))
990989, 927syl6req 2873 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) = π → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝑥 ∈ ((𝑋 − π)(,)𝑋) ↦ 1) lim 𝑋))
991966, 971, 9903eltr4d 2928 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) = π → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
992991adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ (𝑋 mod 𝑇) = π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
993153a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → π ∈ ℝ*)
994932a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → 𝑇 ∈ ℝ*)
995765a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → (𝑋 mod 𝑇) ∈ ℝ)
996118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → π ∈ ℝ)
997 icogelb 12782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℝ*𝑇 ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (π[,)𝑇)) → π ≤ (𝑋 mod 𝑇))
998153, 932, 997mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → π ≤ (𝑋 mod 𝑇))
999998adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → π ≤ (𝑋 mod 𝑇))
1000 neqne 3024 . . . . . . . . . . . . . . . . . . . . . . . . 25 (¬ (𝑋 mod 𝑇) = π → (𝑋 mod 𝑇) ≠ π)
10011000adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → (𝑋 mod 𝑇) ≠ π)
1002996, 995, 999, 1001leneltd 10788 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → π < (𝑋 mod 𝑇))
1003960a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → (𝑋 mod 𝑇) < 𝑇)
1004993, 994, 995, 1002, 1003eliood 41766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → (𝑋 mod 𝑇) ∈ (π(,)𝑇))
1005 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ -1) = (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ -1)
1006 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℝ
10071006a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℝ)
10081007, 206sstrdi 3978 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℂ)
1009 neg1cn 11745 . . . . . . . . . . . . . . . . . . . . . . . . 25 -1 ∈ ℂ
10101009a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → -1 ∈ ℂ)
101123a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑋 ∈ ℂ)
10121005, 1008, 1010, 1011constlimc 41898 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → -1 ∈ ((𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ -1) lim 𝑋))
1013151a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 0 ∈ ℝ*)
1014118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π ∈ ℝ)
1015934a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ*)
1016 ioogtlb 41763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℝ*𝑇 ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (π(,)𝑇)) → π < (𝑋 mod 𝑇))
1017153, 932, 1016mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → π < (𝑋 mod 𝑇))
10181013, 1014, 1015, 1017gtnelioc 41758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ¬ (𝑋 mod 𝑇) ∈ (0(,]π))
10191018iffalsed 4477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) = -1)
10201006a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⊤ → (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ⊆ ℝ)
1021361, 1020feqresmpt 6728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → (𝐹 ↾ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) = (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ (𝐹𝑥)))
10221021mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ↾ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) = (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ (𝐹𝑥))
1023 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑥 ∈ ℝ)
10241023, 107, 145sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
10251024adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) ∈ (π(,)𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
1026118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) ∈ (π(,)𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → π ∈ ℝ)
1027133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑇 ∈ ℝ+)
10281023, 1027modcld 13237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑥 mod 𝑇) ∈ ℝ)
10291028adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) ∈ (π(,)𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → (𝑥 mod 𝑇) ∈ ℝ)
103022, 118readdcli 10650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑋 + π) ∈ ℝ
10311030recni 10649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑋 + π) ∈ ℂ
10321031a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 + π) ∈ ℂ)
103323a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑋 ∈ ℂ)
1034765recni 10649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑋 mod 𝑇) ∈ ℂ
10351034a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 mod 𝑇) ∈ ℂ)
10361032, 1033, 1035nnncan2d 11026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (((𝑋 + π) − (𝑋 mod 𝑇)) − (𝑋 − (𝑋 mod 𝑇))) = ((𝑋 + π) − 𝑋))
10371036, 859syl6req 2873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → π = (((𝑋 + π) − (𝑋 mod 𝑇)) − (𝑋 − (𝑋 mod 𝑇))))
10381030, 765resubcli 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ
10391038a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ)
1040766a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 − (𝑋 mod 𝑇)) ∈ ℝ)
10411038rexri 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ*
10421041a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ*)
104322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑋 ∈ ℝ)
10441043rexrd 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑋 ∈ ℝ*)
1045 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋))
1046 ioogtlb 41763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → ((𝑋 + π) − (𝑋 mod 𝑇)) < 𝑥)
10471042, 1044, 1045, 1046syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 + π) − (𝑋 mod 𝑇)) < 𝑥)
10481039, 1023, 1040, 1047ltsub1dd 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (((𝑋 + π) − (𝑋 mod 𝑇)) − (𝑋 − (𝑋 mod 𝑇))) < (𝑥 − (𝑋 − (𝑋 mod 𝑇))))
10491037, 1048eqbrtrd 5080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → π < (𝑥 − (𝑋 − (𝑋 mod 𝑇))))
10501023recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑥 ∈ ℂ)
1051 sub31 41550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (𝑋 mod 𝑇) ∈ ℂ) → (𝑥 − (𝑋 − (𝑋 mod 𝑇))) = ((𝑋 mod 𝑇) − (𝑋𝑥)))
10521050, 1033, 1035, 1051syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑥 − (𝑋 − (𝑋 mod 𝑇))) = ((𝑋 mod 𝑇) − (𝑋𝑥)))
10531049, 1052breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → π < ((𝑋 mod 𝑇) − (𝑋𝑥)))
10541053adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((π < (𝑋 mod 𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → π < ((𝑋 mod 𝑇) − (𝑋𝑥)))
10551043, 1023resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋𝑥) ∈ ℝ)
1056 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 0 ∈ ℝ)
1057 iooltub 41779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → 𝑥 < 𝑋)
10581042, 1044, 1045, 1057syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑥 < 𝑋)
10591023, 1043posdifd 11221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑥 < 𝑋 ↔ 0 < (𝑋𝑥)))
10601058, 1059mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 0 < (𝑋𝑥))
10611056, 1055, 1060ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 0 ≤ (𝑋𝑥))
10621043, 1039resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 − ((𝑋 + π) − (𝑋 mod 𝑇))) ∈ ℝ)
1063120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 𝑇 ∈ ℝ)
10641039, 1023, 1043, 1047ltsub2dd 11247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋𝑥) < (𝑋 − ((𝑋 + π) − (𝑋 mod 𝑇))))
1065 sub31 41550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑋 ∈ ℂ ∧ (𝑋 + π) ∈ ℂ ∧ (𝑋 mod 𝑇) ∈ ℂ) → (𝑋 − ((𝑋 + π) − (𝑋 mod 𝑇))) = ((𝑋 mod 𝑇) − ((𝑋 + π) − 𝑋)))
106623, 1031, 1034, 1065mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑋 − ((𝑋 + π) − (𝑋 mod 𝑇))) = ((𝑋 mod 𝑇) − ((𝑋 + π) − 𝑋))
1067859oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑋 mod 𝑇) − ((𝑋 + π) − 𝑋)) = ((𝑋 mod 𝑇) − π)
10681066, 1067eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑋 − ((𝑋 + π) − (𝑋 mod 𝑇))) = ((𝑋 mod 𝑇) − π)
1069 ltsubrp 12419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑋 mod 𝑇) ∈ ℝ ∧ π ∈ ℝ+) → ((𝑋 mod 𝑇) − π) < (𝑋 mod 𝑇))
1070765, 182, 1069mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑋 mod 𝑇) − π) < (𝑋 mod 𝑇)
1071765, 118resubcli 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑋 mod 𝑇) − π) ∈ ℝ
10721071, 765, 120lttri 10760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝑋 mod 𝑇) − π) < (𝑋 mod 𝑇) ∧ (𝑋 mod 𝑇) < 𝑇) → ((𝑋 mod 𝑇) − π) < 𝑇)
10731070, 960, 1072mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑋 mod 𝑇) − π) < 𝑇
10741068, 1073eqbrtri 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑋 − ((𝑋 + π) − (𝑋 mod 𝑇))) < 𝑇
10751074a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 − ((𝑋 + π) − (𝑋 mod 𝑇))) < 𝑇)
10761055, 1062, 1063, 1064, 1075lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋𝑥) < 𝑇)
1077 modid 13258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑋𝑥) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑋𝑥) ∧ (𝑋𝑥) < 𝑇)) → ((𝑋𝑥) mod 𝑇) = (𝑋𝑥))
10781055, 1027, 1061, 1076, 1077syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋𝑥) mod 𝑇) = (𝑋𝑥))
10791078oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 mod 𝑇) − ((𝑋𝑥) mod 𝑇)) = ((𝑋 mod 𝑇) − (𝑋𝑥)))
10801079oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (((𝑋 mod 𝑇) − ((𝑋𝑥) mod 𝑇)) mod 𝑇) = (((𝑋 mod 𝑇) − (𝑋𝑥)) mod 𝑇))
1081765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 mod 𝑇) ∈ ℝ)
10821081, 1055resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 mod 𝑇) − (𝑋𝑥)) ∈ ℝ)
1083118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → π ∈ ℝ)
10841052, 1082eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑥 − (𝑋 − (𝑋 mod 𝑇))) ∈ ℝ)
108568a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 0 < π)
10861056, 1083, 1084, 1085, 1049lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 0 < (𝑥 − (𝑋 − (𝑋 mod 𝑇))))
10871086, 1052breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 0 < ((𝑋 mod 𝑇) − (𝑋𝑥)))
10881056, 1082, 1087ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → 0 ≤ ((𝑋 mod 𝑇) − (𝑋𝑥)))
10891043, 1040resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 − (𝑋 − (𝑋 mod 𝑇))) ∈ ℝ)
10901023, 1043, 1040, 1058ltsub1dd 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑥 − (𝑋 − (𝑋 mod 𝑇))) < (𝑋 − (𝑋 − (𝑋 mod 𝑇))))
1091 nncan 10909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑋 ∈ ℂ ∧ (𝑋 mod 𝑇) ∈ ℂ) → (𝑋 − (𝑋 − (𝑋 mod 𝑇))) = (𝑋 mod 𝑇))
109223, 1034, 1091mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑋 − (𝑋 − (𝑋 mod 𝑇))) = (𝑋 mod 𝑇)
10931092, 960eqbrtri 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑋 − (𝑋 − (𝑋 mod 𝑇))) < 𝑇
10941093a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 − (𝑋 − (𝑋 mod 𝑇))) < 𝑇)
10951084, 1089, 1063, 1090, 1094lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑥 − (𝑋 − (𝑋 mod 𝑇))) < 𝑇)
10961052, 1095eqbrtrrd 5082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 mod 𝑇) − (𝑋𝑥)) < 𝑇)
1097 modid 13258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝑋 mod 𝑇) − (𝑋𝑥)) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ ((𝑋 mod 𝑇) − (𝑋𝑥)) ∧ ((𝑋 mod 𝑇) − (𝑋𝑥)) < 𝑇)) → (((𝑋 mod 𝑇) − (𝑋𝑥)) mod 𝑇) = ((𝑋 mod 𝑇) − (𝑋𝑥)))
10981082, 1027, 1088, 1096, 1097syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (((𝑋 mod 𝑇) − (𝑋𝑥)) mod 𝑇) = ((𝑋 mod 𝑇) − (𝑋𝑥)))
10991080, 1098eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 mod 𝑇) − (𝑋𝑥)) = (((𝑋 mod 𝑇) − ((𝑋𝑥) mod 𝑇)) mod 𝑇))
1100 modsubmodmod 13292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑋 ∈ ℝ ∧ (𝑋𝑥) ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (((𝑋 mod 𝑇) − ((𝑋𝑥) mod 𝑇)) mod 𝑇) = ((𝑋 − (𝑋𝑥)) mod 𝑇))
11011043, 1055, 1027, 1100syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (((𝑋 mod 𝑇) − ((𝑋𝑥) mod 𝑇)) mod 𝑇) = ((𝑋 − (𝑋𝑥)) mod 𝑇))
11021033, 1050nncand 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → (𝑋 − (𝑋𝑥)) = 𝑥)
11031102oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 − (𝑋𝑥)) mod 𝑇) = (𝑥 mod 𝑇))
11041099, 1101, 11033eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) → ((𝑋 mod 𝑇) − (𝑋𝑥)) = (𝑥 mod 𝑇))
11051104adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((π < (𝑋 mod 𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → ((𝑋 mod 𝑇) − (𝑋𝑥)) = (𝑥 mod 𝑇))
11061054, 1105breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((π < (𝑋 mod 𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → π < (𝑥 mod 𝑇))
11071017, 1106sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑋 mod 𝑇) ∈ (π(,)𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → π < (𝑥 mod 𝑇))
11081026, 1029, 1107ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) ∈ (π(,)𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → π ≤ (𝑥 mod 𝑇))
11091026, 1029, 1108lensymd 10785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑋 mod 𝑇) ∈ (π(,)𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → ¬ (𝑥 mod 𝑇) < π)
11101109iffalsed 4477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) ∈ (π(,)𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
11111025, 1110eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) ∈ (π(,)𝑇) ∧ 𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) → (𝐹𝑥) = -1)
11121111mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ (𝐹𝑥)) = (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ -1))
11131022, 1112syl5req 2869 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ -1) = (𝐹 ↾ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)))
11141113oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ -1) lim 𝑋) = ((𝐹 ↾ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) lim 𝑋))
1115208a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝐹:ℝ⟶ℂ)
11161041a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ*)
111722a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → 𝑋 ∈ ℝ)
1118 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ)
1119 ltaddsublt 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑋 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑋 mod 𝑇) ∈ ℝ) → (π < (𝑋 mod 𝑇) ↔ ((𝑋 + π) − (𝑋 mod 𝑇)) < 𝑋))
11201117, 1014, 1118, 1119syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → (π < (𝑋 mod 𝑇) ↔ ((𝑋 + π) − (𝑋 mod 𝑇)) < 𝑋))
11211017, 1120mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((𝑋 + π) − (𝑋 mod 𝑇)) < 𝑋)
1122363a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → -∞ ∈ ℝ*)
1123 mnflt 12512 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ → -∞ < ((𝑋 + π) − (𝑋 mod 𝑇)))
1124 xrltle 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((-∞ ∈ ℝ* ∧ ((𝑋 + π) − (𝑋 mod 𝑇)) ∈ ℝ*) → (-∞ < ((𝑋 + π) − (𝑋 mod 𝑇)) → -∞ ≤ ((𝑋 + π) − (𝑋 mod 𝑇))))
1125363, 1041, 1124mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-∞ < ((𝑋 + π) − (𝑋 mod 𝑇)) → -∞ ≤ ((𝑋 + π) − (𝑋 mod 𝑇)))
11261038, 1123, 1125mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -∞ ≤ ((𝑋 + π) − (𝑋 mod 𝑇))
11271126a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → -∞ ≤ ((𝑋 + π) − (𝑋 mod 𝑇)))
11281115, 1116, 1117, 1121, 1007, 1122, 1127limcresiooub 41916 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((𝐹 ↾ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
11291114, 1128eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝑥 ∈ (((𝑋 + π) − (𝑋 mod 𝑇))(,)𝑋) ↦ -1) lim 𝑋))
11301012, 1019, 11293eltr4d 2928 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π(,)𝑇) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
11311004, 1130syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ ¬ (𝑋 mod 𝑇) = π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
1132992, 1131pm2.61dan 811 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
1133962, 1132syl 17 . . . . . . . . . . . . . . . . . . 19 ((¬ (𝑋 mod 𝑇) ∈ (0(,)π) ∧ ¬ (𝑋 mod 𝑇) = 0) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
1134930, 1133pm2.61dan 811 . . . . . . . . . . . . . . . . . 18 (¬ (𝑋 mod 𝑇) ∈ (0(,)π) → if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
1135812, 1134pm2.61i 184 . . . . . . . . . . . . . . . . 17 if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)
1136 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1) = (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1)
1137 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ⊆ ℝ
11381137a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ⊆ ℝ)
11391138, 206sstrdi 3978 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ⊆ ℂ)
11401136, 1139, 202, 817constlimc 41898 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → 1 ∈ ((𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1) lim 𝑋))
11411140mptru 1540 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ((𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1) lim 𝑋)
11421141a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑋 mod 𝑇) ∈ (0[,)π) → 1 ∈ ((𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1) lim 𝑋))
1143104a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)))
1144 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋 → (𝑥 mod 𝑇) = (𝑋 mod 𝑇))
11451144breq1d 5068 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑋 → ((𝑥 mod 𝑇) < π ↔ (𝑋 mod 𝑇) < π))
11461145ifbid 4488 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑋 → if((𝑥 mod 𝑇) < π, 1, -1) = if((𝑋 mod 𝑇) < π, 1, -1))
11471146adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 mod 𝑇) ∈ (0[,)π) ∧ 𝑥 = 𝑋) → if((𝑥 mod 𝑇) < π, 1, -1) = if((𝑋 mod 𝑇) < π, 1, -1))
114822a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → 𝑋 ∈ ℝ)
1149105, 106ifcli 4512 . . . . . . . . . . . . . . . . . . . . . 22 if((𝑋 mod 𝑇) < π, 1, -1) ∈ ℝ
11501149a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → if((𝑋 mod 𝑇) < π, 1, -1) ∈ ℝ)
11511143, 1147, 1148, 1150fvmptd 6769 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝐹𝑋) = if((𝑋 mod 𝑇) < π, 1, -1))
1152 icoltub 41777 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝑋 mod 𝑇) ∈ (0[,)π)) → (𝑋 mod 𝑇) < π)
1153151, 153, 1152mp3an12 1447 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝑋 mod 𝑇) < π)
11541153iftrued 4474 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0[,)π) → if((𝑋 mod 𝑇) < π, 1, -1) = 1)
11551151, 1154eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝐹𝑋) = 1)
1156361, 1138feqresmpt 6728 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝐹 ↾ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) = (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ (𝐹𝑥)))
11571156mptru 1540 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ↾ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) = (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ (𝐹𝑥))
1158 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑥 ∈ ℝ)
11591158, 107, 145sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
11601159adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) ∈ (0[,)π) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
116122a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑋 ∈ ℝ)
11621158, 1161resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑥𝑋) ∈ ℝ)
1163133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑇 ∈ ℝ+)
1164 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 0 ∈ ℝ)
11651161rexrd 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑋 ∈ ℝ*)
1166118, 765resubcli 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (π − (𝑋 mod 𝑇)) ∈ ℝ
116722, 1166readdcli 10650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ
11681167rexri 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ*
11691168a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ*)
1170 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))))
1171 ioogtlb 41763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑋 ∈ ℝ* ∧ (𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ*𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → 𝑋 < 𝑥)
11721165, 1169, 1170, 1171syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑋 < 𝑥)
11731161, 1158posdifd 11221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑋 < 𝑥 ↔ 0 < (𝑥𝑋)))
11741172, 1173mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 0 < (𝑥𝑋))
11751164, 1162, 1174ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 0 ≤ (𝑥𝑋))
1176118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → π ∈ ℝ)
1177120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑇 ∈ ℝ)
11781167a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ)
11791178, 1161resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋) ∈ ℝ)
1180 iooltub 41779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑋 ∈ ℝ* ∧ (𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ*𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → 𝑥 < (𝑋 + (π − (𝑋 mod 𝑇))))
11811165, 1169, 1170, 1180syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑥 < (𝑋 + (π − (𝑋 mod 𝑇))))
11821158, 1178, 1161, 1181ltsub1dd 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑥𝑋) < ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋))
11831166recni 10649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (π − (𝑋 mod 𝑇)) ∈ ℂ
1184 pncan2 10887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑋 ∈ ℂ ∧ (π − (𝑋 mod 𝑇)) ∈ ℂ) → ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋) = (π − (𝑋 mod 𝑇)))
118523, 1183, 1184mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋) = (π − (𝑋 mod 𝑇))
1186 subge02 11150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((π ∈ ℝ ∧ (𝑋 mod 𝑇) ∈ ℝ) → (0 ≤ (𝑋 mod 𝑇) ↔ (π − (𝑋 mod 𝑇)) ≤ π))
1187118, 765, 1186mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (0 ≤ (𝑋 mod 𝑇) ↔ (π − (𝑋 mod 𝑇)) ≤ π)
1188948, 1187mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (π − (𝑋 mod 𝑇)) ≤ π
11891185, 1188eqbrtri 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋) ≤ π
11901189a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋) ≤ π)
11911162, 1179, 1176, 1182, 1190ltletrd 10794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑥𝑋) < π)
1192185a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → π < 𝑇)
11931162, 1176, 1177, 1191, 1192lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑥𝑋) < 𝑇)
1194 modid 13258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑥𝑋) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ (𝑥𝑋) ∧ (𝑥𝑋) < 𝑇)) → ((𝑥𝑋) mod 𝑇) = (𝑥𝑋))
11951162, 1163, 1175, 1193, 1194syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑥𝑋) mod 𝑇) = (𝑥𝑋))
11961195oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) = ((𝑋 mod 𝑇) + (𝑥𝑋)))
11971196oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) mod 𝑇) = (((𝑋 mod 𝑇) + (𝑥𝑋)) mod 𝑇))
1198765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑋 mod 𝑇) ∈ ℝ)
11991198, 1162readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) ∈ ℝ)
12001161, 1161resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑋𝑋) ∈ ℝ)
12011198, 1200readdcld 10664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑋𝑋)) ∈ ℝ)
120223subidi 10951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑋𝑋) = 0
12031202oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑋 mod 𝑇) + (𝑋𝑋)) = ((𝑋 mod 𝑇) + 0)
12041034addid1i 10821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑋 mod 𝑇) + 0) = (𝑋 mod 𝑇)
12051203, 1204eqtr2i 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑋 mod 𝑇) = ((𝑋 mod 𝑇) + (𝑋𝑋))
1206948, 1205breqtri 5083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 0 ≤ ((𝑋 mod 𝑇) + (𝑋𝑋))
12071206a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 0 ≤ ((𝑋 mod 𝑇) + (𝑋𝑋)))
12081161, 1158, 1161, 1172ltsub1dd 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑋𝑋) < (𝑥𝑋))
12091200, 1162, 1198, 1208ltadd2dd 10793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑋𝑋)) < ((𝑋 mod 𝑇) + (𝑥𝑋)))
12101164, 1201, 1199, 1207, 1209lelttrd 10792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 0 < ((𝑋 mod 𝑇) + (𝑥𝑋)))
12111164, 1199, 1210ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 0 ≤ ((𝑋 mod 𝑇) + (𝑥𝑋)))
12121162, 1179, 1198, 1182ltadd2dd 10793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) < ((𝑋 mod 𝑇) + ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋)))
12131185oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑋 mod 𝑇) + ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋)) = ((𝑋 mod 𝑇) + (π − (𝑋 mod 𝑇)))
12141034, 52pncan3i 10957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑋 mod 𝑇) + (π − (𝑋 mod 𝑇))) = π
12151213, 1214eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑋 mod 𝑇) + ((𝑋 + (π − (𝑋 mod 𝑇))) − 𝑋)) = π
12161212, 1215breqtrdi 5099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) < π)
12171199, 1176, 1177, 1216, 1192lttrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) < 𝑇)
1218 modid 13258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑋 mod 𝑇) + (𝑥𝑋)) ∈ ℝ ∧ 𝑇 ∈ ℝ+) ∧ (0 ≤ ((𝑋 mod 𝑇) + (𝑥𝑋)) ∧ ((𝑋 mod 𝑇) + (𝑥𝑋)) < 𝑇)) → (((𝑋 mod 𝑇) + (𝑥𝑋)) mod 𝑇) = ((𝑋 mod 𝑇) + (𝑥𝑋)))
12191199, 1163, 1211, 1217, 1218syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (((𝑋 mod 𝑇) + (𝑥𝑋)) mod 𝑇) = ((𝑋 mod 𝑇) + (𝑥𝑋)))
12201197, 1219eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) = (((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) mod 𝑇))
1221 modaddabs 13271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑋 ∈ ℝ ∧ (𝑥𝑋) ∈ ℝ ∧ 𝑇 ∈ ℝ+) → (((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) mod 𝑇) = ((𝑋 + (𝑥𝑋)) mod 𝑇))
12221161, 1162, 1163, 1221syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) mod 𝑇) = ((𝑋 + (𝑥𝑋)) mod 𝑇))
122323a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑋 ∈ ℂ)
12241158recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → 𝑥 ∈ ℂ)
12251223, 1224pncan3d 10994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑋 + (𝑥𝑋)) = 𝑥)
12261225oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → ((𝑋 + (𝑥𝑋)) mod 𝑇) = (𝑥 mod 𝑇))
12271220, 1222, 12263eqtrrd 2861 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) → (𝑥 mod 𝑇) = ((𝑋 mod 𝑇) + (𝑥𝑋)))
12281227adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → (𝑥 mod 𝑇) = ((𝑋 mod 𝑇) + (𝑥𝑋)))
12291216adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) < π)
12301228, 1229eqbrtrd 5080 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) < π ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → (𝑥 mod 𝑇) < π)
12311153, 1230sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 mod 𝑇) ∈ (0[,)π) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → (𝑥 mod 𝑇) < π)
12321231iftrued 4474 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) ∈ (0[,)π) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → if((𝑥 mod 𝑇) < π, 1, -1) = 1)
12331160, 1232eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋 mod 𝑇) ∈ (0[,)π) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) → (𝐹𝑥) = 1)
12341233mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1))
12351157, 1234syl5req 2869 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1) = (𝐹 ↾ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))))
12361235oveq1d 7165 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0[,)π) → ((𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1) lim 𝑋) = ((𝐹 ↾ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) lim 𝑋))
1237208a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → 𝐹:ℝ⟶ℂ)
12381168a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ*)
12391166a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (0[,)π) → (π − (𝑋 mod 𝑇)) ∈ ℝ)
1240765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝑋 mod 𝑇) ∈ ℝ)
1241118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (0[,)π) → π ∈ ℝ)
12421240, 1241posdifd 11221 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (0[,)π) → ((𝑋 mod 𝑇) < π ↔ 0 < (π − (𝑋 mod 𝑇))))
12431153, 1242mpbid 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (0[,)π) → 0 < (π − (𝑋 mod 𝑇)))
12441239, 1243elrpd 12422 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (0[,)π) → (π − (𝑋 mod 𝑇)) ∈ ℝ+)
12451148, 1244ltaddrpd 12458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → 𝑋 < (𝑋 + (π − (𝑋 mod 𝑇))))
12461137a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ⊆ ℝ)
1247374a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → +∞ ∈ ℝ*)
1248 ltpnf 12509 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ → (𝑋 + (π − (𝑋 mod 𝑇))) < +∞)
1249 xrltle 12536 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 + (π − (𝑋 mod 𝑇))) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑋 + (π − (𝑋 mod 𝑇))) < +∞ → (𝑋 + (π − (𝑋 mod 𝑇))) ≤ +∞))
12501168, 374, 1249mp2an 690 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 + (π − (𝑋 mod 𝑇))) < +∞ → (𝑋 + (π − (𝑋 mod 𝑇))) ≤ +∞)
12511167, 1248, 1250mp2b 10 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 + (π − (𝑋 mod 𝑇))) ≤ +∞
12521251a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝑋 + (π − (𝑋 mod 𝑇))) ≤ +∞)
12531237, 1148, 1238, 1245, 1246, 1247, 1252limcresioolb 41917 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (0[,)π) → ((𝐹 ↾ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇))))) lim 𝑋) = ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
12541236, 1253eqtr2d 2857 . . . . . . . . . . . . . . . . . . 19 ((𝑋 mod 𝑇) ∈ (0[,)π) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝑥 ∈ (𝑋(,)(𝑋 + (π − (𝑋 mod 𝑇)))) ↦ 1) lim 𝑋))
12551142, 1155, 12543eltr4d 2928 . . . . . . . . . . . . . . . . . 18 ((𝑋 mod 𝑇) ∈ (0[,)π) → (𝐹𝑋) ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
1256153a1i 11 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑋 mod 𝑇) ∈ (0[,)π) → π ∈ ℝ*)
1257932a1i 11 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑋 mod 𝑇) ∈ (0[,)π) → 𝑇 ∈ ℝ*)
1258934a1i 11 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑋 mod 𝑇) ∈ (0[,)π) → (𝑋 mod 𝑇) ∈ ℝ*)
1259151a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑋 mod 𝑇) ∈ (0[,)π) ∧ ¬ π ≤ (𝑋 mod 𝑇)) → 0 ∈ ℝ*)
1260153a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑋 mod 𝑇) ∈ (0[,)π) ∧ ¬ π ≤ (𝑋 mod 𝑇)) → π ∈ ℝ*)
1261934a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑋 mod 𝑇) ∈ (0[,)π) ∧ ¬ π ≤ (𝑋 mod 𝑇)) → (𝑋 mod 𝑇) ∈ ℝ*)
1262948a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑋 mod 𝑇) ∈ (0[,)π) ∧ ¬ π ≤ (𝑋 mod 𝑇)) → 0 ≤ (𝑋 mod 𝑇))
1263765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (¬ π ≤ (𝑋 mod 𝑇) → (𝑋 mod 𝑇) ∈ ℝ)
1264118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (¬ π ≤ (𝑋 mod 𝑇) → π ∈ ℝ)
12651263, 1264ltnled 10781 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ π ≤ (𝑋 mod 𝑇) → ((𝑋 mod 𝑇) < π ↔ ¬ π ≤ (𝑋 mod 𝑇)))
12661265ibir 270 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ π ≤ (𝑋 mod 𝑇) → (𝑋 mod 𝑇) < π)
12671266adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑋 mod 𝑇) ∈ (0[,)π) ∧ ¬ π ≤ (𝑋 mod 𝑇)) → (𝑋 mod 𝑇) < π)
12681259, 1260, 1261, 1262, 1267elicod 12781 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (𝑋 mod 𝑇) ∈ (0[,)π) ∧ ¬ π ≤ (𝑋 mod 𝑇)) → (𝑋 mod 𝑇) ∈ (0[,)π))
1269 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (𝑋 mod 𝑇) ∈ (0[,)π) ∧ ¬ π ≤ (𝑋 mod 𝑇)) → ¬ (𝑋 mod 𝑇) ∈ (0[,)π))
12701268, 1269condan 816 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑋 mod 𝑇) ∈ (0[,)π) → π ≤ (𝑋 mod 𝑇))
1271960a1i 11 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑋 mod 𝑇) ∈ (0[,)π) → (𝑋 mod 𝑇) < 𝑇)
12721256, 1257, 1258, 1270, 1271elicod 12781 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑋 mod 𝑇) ∈ (0[,)π) → (𝑋 mod 𝑇) ∈ (π[,)𝑇))
1273 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1) = (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1)
1274 ioossre 12792 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ⊆ ℝ
12751274a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ⊆ ℝ)
12761275, 206sstrdi 3978 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ⊆ ℂ)
12771273, 1276, 304, 817constlimc 41898 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → -1 ∈ ((𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1) lim 𝑋))
12781277mptru 1540 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ((𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1) lim 𝑋)
12791278a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → -1 ∈ ((𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1) lim 𝑋))
1280 1ex 10631 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ V
1281106elexi 3513 . . . . . . . . . . . . . . . . . . . . . . . . 25 -1 ∈ V
12821280, 1281ifex 4514 . . . . . . . . . . . . . . . . . . . . . . . 24 if((𝑋 mod 𝑇) < π, 1, -1) ∈ V
12831146, 104, 1282fvmpt 6762 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋 ∈ ℝ → (𝐹𝑋) = if((𝑋 mod 𝑇) < π, 1, -1))
128422, 1283ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑋) = if((𝑋 mod 𝑇) < π, 1, -1)
12851284a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝐹𝑋) = if((𝑋 mod 𝑇) < π, 1, -1))
1286118a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → π ∈ ℝ)
1287765a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑋 mod 𝑇) ∈ ℝ)
12881286, 1287, 998lensymd 10785 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → ¬ (𝑋 mod 𝑇) < π)
12891288iffalsed 4477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → if((𝑋 mod 𝑇) < π, 1, -1) = -1)
12901285, 1289eqtrd 2856 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝐹𝑋) = -1)
1291361, 1275feqresmpt 6728 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝐹 ↾ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) = (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ (𝐹𝑥)))
12921291mptru 1540 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ↾ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) = (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ (𝐹𝑥))
1293 elioore 12762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑥 ∈ ℝ)
12941293, 107, 145sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
12951294adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → (𝐹𝑥) = if((𝑥 mod 𝑇) < π, 1, -1))
1296118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → π ∈ ℝ)
129722a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑋 ∈ ℝ)
12981293, 1297resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑥𝑋) ∈ ℝ)
1299133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑇 ∈ ℝ+)
1300 0red 10638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 0 ∈ ℝ)
13011297rexrd 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑋 ∈ ℝ*)
1302120, 765resubcli 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑇 − (𝑋 mod 𝑇)) ∈ ℝ
130322, 1302readdcli 10650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ
13041303rexri 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ*
13051304a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ*)
1306 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))))
1307 ioogtlb 41763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑋 ∈ ℝ* ∧ (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ*𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → 𝑋 < 𝑥)
13081301, 1305, 1306, 1307syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑋 < 𝑥)
13091297, 1293posdifd 11221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑋 < 𝑥 ↔ 0 < (𝑥𝑋)))
13101308, 1309mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 0 < (𝑥𝑋))
13111300, 1298, 1310ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 0 ≤ (𝑥𝑋))
13121303a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ)
13131312, 1297resubcld 11062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋) ∈ ℝ)
1314120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑇 ∈ ℝ)
1315 iooltub 41779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑋 ∈ ℝ* ∧ (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ*𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → 𝑥 < (𝑋 + (𝑇 − (𝑋 mod 𝑇))))
13161301, 1305, 1306, 1315syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑥 < (𝑋 + (𝑇 − (𝑋 mod 𝑇))))
13171293, 1312, 1297, 1316ltsub1dd 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑥𝑋) < ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋))
13181302recni 10649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑇 − (𝑋 mod 𝑇)) ∈ ℂ
1319 pncan2 10887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑋 ∈ ℂ ∧ (𝑇 − (𝑋 mod 𝑇)) ∈ ℂ) → ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋) = (𝑇 − (𝑋 mod 𝑇)))
132023, 1318, 1319mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋) = (𝑇 − (𝑋 mod 𝑇))
1321 subge02 11150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑇 ∈ ℝ ∧ (𝑋 mod 𝑇) ∈ ℝ) → (0 ≤ (𝑋 mod 𝑇) ↔ (𝑇 − (𝑋 mod 𝑇)) ≤ 𝑇))
1322120, 765, 1321mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (0 ≤ (𝑋 mod 𝑇) ↔ (𝑇 − (𝑋 mod 𝑇)) ≤ 𝑇)
1323948, 1322mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑇 − (𝑋 mod 𝑇)) ≤ 𝑇
13241320, 1323eqbrtri 5079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋) ≤ 𝑇
13251324a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋) ≤ 𝑇)
13261298, 1313, 1314, 1317, 1325ltletrd 10794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑥𝑋) < 𝑇)
13271298, 1299, 1311, 1326, 1194syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑥𝑋) mod 𝑇) = (𝑥𝑋))
13281327oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) = ((𝑋 mod 𝑇) + (𝑥𝑋)))
13291328oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) mod 𝑇) = (((𝑋 mod 𝑇) + (𝑥𝑋)) mod 𝑇))
1330 readdcl 10614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑋 mod 𝑇) ∈ ℝ ∧ (𝑥𝑋) ∈ ℝ) → ((𝑋 mod 𝑇) + (𝑥𝑋)) ∈ ℝ)
1331765, 1298, 1330sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) ∈ ℝ)
1332765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑋 mod 𝑇) ∈ ℝ)
1333948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 0 ≤ (𝑋 mod 𝑇))
13341332, 1298, 1333, 1310addgegt0d 11207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 0 < ((𝑋 mod 𝑇) + (𝑥𝑋)))
13351300, 1331, 1334ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 0 ≤ ((𝑋 mod 𝑇) + (𝑥𝑋)))
13361298, 1313, 1332, 1317ltadd2dd 10793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) < ((𝑋 mod 𝑇) + ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋)))
13371320oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑋 mod 𝑇) + ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋)) = ((𝑋 mod 𝑇) + (𝑇 − (𝑋 mod 𝑇)))
13381034, 121pncan3i 10957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑋 mod 𝑇) + (𝑇 − (𝑋 mod 𝑇))) = 𝑇
13391337, 1338eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑋 mod 𝑇) + ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) − 𝑋)) = 𝑇
13401336, 1339breqtrdi 5099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) < 𝑇)
13411331, 1299, 1335, 1340, 1218syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (((𝑋 mod 𝑇) + (𝑥𝑋)) mod 𝑇) = ((𝑋 mod 𝑇) + (𝑥𝑋)))
13421329, 1341eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) = (((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) mod 𝑇))
13431297, 1298, 1299, 1221syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (((𝑋 mod 𝑇) + ((𝑥𝑋) mod 𝑇)) mod 𝑇) = ((𝑋 + (𝑥𝑋)) mod 𝑇))
134423a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑋 ∈ ℂ)
13451293recnd 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → 𝑥 ∈ ℂ)
13461344, 1345pncan3d 10994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑋 + (𝑥𝑋)) = 𝑥)
13471346oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 + (𝑥𝑋)) mod 𝑇) = (𝑥 mod 𝑇))
13481342, 1343, 13473eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) = (𝑥 mod 𝑇))
13491348adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) = (𝑥 mod 𝑇))
13501331adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → ((𝑋 mod 𝑇) + (𝑥𝑋)) ∈ ℝ)
13511349, 1350eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → (𝑥 mod 𝑇) ∈ ℝ)
1352765a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → (𝑋 mod 𝑇) ∈ ℝ)
1353998adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → π ≤ (𝑋 mod 𝑇))
13541298, 1310elrpd 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑥𝑋) ∈ ℝ+)
13551332, 1354ltaddrpd 12458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) → (𝑋 mod 𝑇) < ((𝑋 mod 𝑇) + (𝑥𝑋)))
13561355adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → (𝑋 mod 𝑇) < ((𝑋 mod 𝑇) + (𝑥𝑋)))
13571296, 1352, 1350, 1353, 1356lelttrd 10792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → π < ((𝑋 mod 𝑇) + (𝑥𝑋)))
13581296, 1350, 1357ltled 10782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → π ≤ ((𝑋 mod 𝑇) + (𝑥𝑋)))
13591358, 1349breqtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → π ≤ (𝑥 mod 𝑇))
13601296, 1351, 1359lensymd 10785 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → ¬ (𝑥 mod 𝑇) < π)
13611360iffalsed 4477 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → if((𝑥 mod 𝑇) < π, 1, -1) = -1)
13621295, 1361eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋 mod 𝑇) ∈ (π[,)𝑇) ∧ 𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) → (𝐹𝑥) = -1)
13631362mpteq2dva 5153 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1))
13641292, 1363syl5req 2869 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1) = (𝐹 ↾ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))))
13651364oveq1d 7165 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → ((𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1) lim 𝑋) = ((𝐹 ↾ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) lim 𝑋))
1366208a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → 𝐹:ℝ⟶ℂ)
136722a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → 𝑋 ∈ ℝ)
13681304a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ*)
13691302a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑇 − (𝑋 mod 𝑇)) ∈ ℝ)
1370960a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑋 mod 𝑇) < 𝑇)
1371120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → 𝑇 ∈ ℝ)
13721287, 1371posdifd 11221 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → ((𝑋 mod 𝑇) < 𝑇 ↔ 0 < (𝑇 − (𝑋 mod 𝑇))))
13731370, 1372mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → 0 < (𝑇 − (𝑋 mod 𝑇)))
13741369, 1373elrpd 12422 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑇 − (𝑋 mod 𝑇)) ∈ ℝ+)
13751367, 1374ltaddrpd 12458 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → 𝑋 < (𝑋 + (𝑇 − (𝑋 mod 𝑇))))
13761274a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ⊆ ℝ)
1377374a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → +∞ ∈ ℝ*)
1378 ltpnf 12509 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ → (𝑋 + (𝑇 − (𝑋 mod 𝑇))) < +∞)
1379 xrltle 12536 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 + (𝑇 − (𝑋 mod 𝑇))) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) < +∞ → (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ≤ +∞))
13801304, 374, 1379mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋 + (𝑇 − (𝑋 mod 𝑇))) < +∞ → (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ≤ +∞)
13811303, 1378, 1380mp2b 10 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ≤ +∞
13821381a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝑋 + (𝑇 − (𝑋 mod 𝑇))) ≤ +∞)
13831366, 1367, 1368, 1375, 1376, 1377, 1382limcresioolb 41917 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → ((𝐹 ↾ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇))))) lim 𝑋) = ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
13841365, 1383eqtr2d 2857 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝑥 ∈ (𝑋(,)(𝑋 + (𝑇 − (𝑋 mod 𝑇)))) ↦ -1) lim 𝑋))
13851279, 1290, 13843eltr4d 2928 . . . . . . . . . . . . . . . . . . 19 ((𝑋 mod 𝑇) ∈ (π[,)𝑇) → (𝐹𝑋) ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
13861272, 1385syl 17 . . . . . . . . . . . . . . . . . 18 (¬ (𝑋 mod 𝑇) ∈ (0[,)π) → (𝐹𝑋) ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
13871255, 1386pm2.61i 184 . . . . . . . . . . . . . . . . 17 (𝐹𝑋) ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)
1388 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
1389110, 104, 1388sqwvfoura 42507 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) = 0)
13901389eqcomd 2827 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → 0 = (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
13911390mpteq2ia 5149 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 ↦ 0) = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
1392 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
1393110, 104, 1392sqwvfourb 42508 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))
13941393eqcomd 2827 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) = (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
13951394mpteq2ia 5149 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π)))) = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
1396 nnnn0 11898 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1397 0red 10638 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → 0 ∈ ℝ)
1398 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ0 ↦ 0) = (𝑛 ∈ ℕ0 ↦ 0)
13991398fvmpt2 6773 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ0 ∧ 0 ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ 0)‘𝑛) = 0)
14001396, 1397, 1399syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ 0)‘𝑛) = 0)
14011400oveq1d 7165 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ0 ↦ 0)‘𝑛) · (cos‘(𝑛 · 𝑋))) = (0 · (cos‘(𝑛 · 𝑋))))
140274coscld 15478 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (cos‘(𝑛 · 𝑋)) ∈ ℂ)
14031402mul02d 10832 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (0 · (cos‘(𝑛 · 𝑋))) = 0)
14041401, 1403eqtrd 2856 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ0 ↦ 0)‘𝑛) · (cos‘(𝑛 · 𝑋))) = 0)
1405 ovex 7183 . . . . . . . . . . . . . . . . . . . . . . 23 (4 / (𝑛 · π)) ∈ V
140689, 1405ifex 4514 . . . . . . . . . . . . . . . . . . . . . 22 if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) ∈ V
1407 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π)))) = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))
14081407fvmpt2 6773 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) ∈ V) → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))‘𝑛) = if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))
14091406, 1408mpan2 689 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))‘𝑛) = if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))
14101409oveq1d 7165 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))‘𝑛) · (sin‘(𝑛 · 𝑋))) = (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))))
14111404, 1410oveq12d 7168 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((((𝑛 ∈ ℕ0 ↦ 0)‘𝑛) · (cos‘(𝑛 · 𝑋))) + (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))‘𝑛) · (sin‘(𝑛 · 𝑋)))) = (0 + (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋)))))
141260, 72ifcld 4511 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) ∈ ℂ)
14131412, 75mulcld 10655 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))) ∈ ℂ)
14141413addid2d 10835 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (0 + (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋)))) = (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))))
1415 iftrue 4472 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∥ 𝑛 → if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) = 0)
14161415oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∥ 𝑛 → (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))) = (0 · (sin‘(𝑛 · 𝑋))))
141775mul02d 10832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (0 · (sin‘(𝑛 · 𝑋))) = 0)
14181416, 1417sylan9eqr 2878 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 2 ∥ 𝑛) → (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))) = 0)
1419 iftrue 4472 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∥ 𝑛 → if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))) = 0)
14201419eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∥ 𝑛 → 0 = if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))
14211420adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 2 ∥ 𝑛) → 0 = if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))
14221418, 1421eqtrd 2856 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 2 ∥ 𝑛) → (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))) = if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))
1423 iffalse 4475 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ 2 ∥ 𝑛 → if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) = (4 / (𝑛 · π)))
14241423oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . 22 (¬ 2 ∥ 𝑛 → (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))) = ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))
14251424adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))) = ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))
1426 iffalse 4475 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ 2 ∥ 𝑛 → if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))) = ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))
14271426eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (¬ 2 ∥ 𝑛 → ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))) = if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))
14281427adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))) = if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))
14291425, 1428eqtrd 2856 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) → (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))) = if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))
14301422, 1429pm2.61dan 811 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))) · (sin‘(𝑛 · 𝑋))) = if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))
14311411, 1414, 14303eqtrrd 2861 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))) = ((((𝑛 ∈ ℕ0 ↦ 0)‘𝑛) · (cos‘(𝑛 · 𝑋))) + (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))‘𝑛) · (sin‘(𝑛 · 𝑋)))))
14321431mpteq2ia 5149 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))))) = (𝑛 ∈ ℕ ↦ ((((𝑛 ∈ ℕ0 ↦ 0)‘𝑛) · (cos‘(𝑛 · 𝑋))) + (((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, (4 / (𝑛 · π))))‘𝑛) · (sin‘(𝑛 · 𝑋)))))
1433109, 110, 147, 148, 329, 603, 674, 753, 22, 1135, 1387, 1391, 1395, 1432fourierclim 42503 . . . . . . . . . . . . . . . 16 seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))) ⇝ (((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) − (((𝑛 ∈ ℕ0 ↦ 0)‘0) / 2))
1434 0nn0 11906 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
1435 eqidd 2822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 0 → 0 = 0)
14361435, 1398, 89fvmpt 6762 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ 0)‘0) = 0)
14371434, 1436ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ↦ 0)‘0) = 0
14381437oveq1i 7160 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0 ↦ 0)‘0) / 2) = (0 / 2)
143928recni 10649 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
144067, 129gtneii 10746 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
14411439, 1440div0i 11368 . . . . . . . . . . . . . . . . . . 19 (0 / 2) = 0
14421438, 1441eqtri 2844 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0 ↦ 0)‘0) / 2) = 0
14431442oveq2i 7161 . . . . . . . . . . . . . . . . 17 (((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) − (((𝑛 ∈ ℕ0 ↦ 0)‘0) / 2)) = (((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) − 0)
1444202mptru 1540 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
14451444, 1009ifcli 4512 . . . . . . . . . . . . . . . . . . . 20 if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) ∈ ℂ
14461149recni 10649 . . . . . . . . . . . . . . . . . . . . 21 if((𝑋 mod 𝑇) < π, 1, -1) ∈ ℂ
14471284, 1446eqeltri 2909 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑋) ∈ ℂ
14481445, 1447addcli 10641 . . . . . . . . . . . . . . . . . . 19 (if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) ∈ ℂ
14491448, 1439, 1440divcli 11376 . . . . . . . . . . . . . . . . . 18 ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) ∈ ℂ
14501449subid1i 10952 . . . . . . . . . . . . . . . . 17 (((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) − 0) = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
14511443, 1450eqtri 2844 . . . . . . . . . . . . . . . 16 (((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) − (((𝑛 ∈ ℕ0 ↦ 0)‘0) / 2)) = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
14521433, 1451breqtri 5083 . . . . . . . . . . . . . . 15 seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))) ⇝ ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
14531452a1i 11 . . . . . . . . . . . . . 14 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))) ⇝ ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2))
145479, 103, 1453sumnnodd 41904 . . . . . . . . . . . . 13 (⊤ → (seq1( + , (𝑘 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1)))) ⇝ ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) ∧ Σ𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘𝑘) = Σ𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1))))
14551454mptru 1540 . . . . . . . . . . . 12 (seq1( + , (𝑘 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1)))) ⇝ ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) ∧ Σ𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘𝑘) = Σ𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1)))
14561455simpli 486 . . . . . . . . . . 11 seq1( + , (𝑘 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1)))) ⇝ ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
1457 breq2 5062 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2 · 𝑘) − 1) → (2 ∥ 𝑛 ↔ 2 ∥ ((2 · 𝑘) − 1)))
1458 oveq1 7157 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2 · 𝑘) − 1) → (𝑛 · π) = (((2 · 𝑘) − 1) · π))
14591458oveq2d 7166 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2 · 𝑘) − 1) → (4 / (𝑛 · π)) = (4 / (((2 · 𝑘) − 1) · π)))
1460 oveq1 7157 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = ((2 · 𝑘) − 1) → (𝑛 · 𝑋) = (((2 · 𝑘) − 1) · 𝑋))
14611460fveq2d 6668 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((2 · 𝑘) − 1) → (sin‘(𝑛 · 𝑋)) = (sin‘(((2 · 𝑘) − 1) · 𝑋)))
14621459, 1461oveq12d 7168 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((2 · 𝑘) − 1) → ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋))) = ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋))))
14631457, 1462ifbieq2d 4491 . . . . . . . . . . . . . . . . 17 (𝑛 = ((2 · 𝑘) − 1) → if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))) = if(2 ∥ ((2 · 𝑘) − 1), 0, ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋)))))
14641463adantl 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = ((2 · 𝑘) − 1)) → if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))) = if(2 ∥ ((2 · 𝑘) − 1), 0, ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋)))))
1465 elnnz 11985 . . . . . . . . . . . . . . . . 17 (((2 · 𝑘) − 1) ∈ ℕ ↔ (((2 · 𝑘) − 1) ∈ ℤ ∧ 0 < ((2 · 𝑘) − 1)))
146620, 48, 1465sylanbrc 585 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((2 · 𝑘) − 1) ∈ ℕ)
1467 ovex 7183 . . . . . . . . . . . . . . . . . 18 ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋))) ∈ V
146889, 1467ifex 4514 . . . . . . . . . . . . . . . . 17 if(2 ∥ ((2 · 𝑘) − 1), 0, ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋)))) ∈ V
14691468a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → if(2 ∥ ((2 · 𝑘) − 1), 0, ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋)))) ∈ V)
147080, 1464, 1466, 1469fvmptd 6769 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1)) = if(2 ∥ ((2 · 𝑘) − 1), 0, ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋)))))
1471 dvdsmul1 15625 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · 𝑘))
147215, 17, 1471sylancr 589 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 2 ∥ (2 · 𝑘))
147318zcnd 12082 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
1474 1cnd 10630 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → 1 ∈ ℂ)
14751473, 1474npcand 10995 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (((2 · 𝑘) − 1) + 1) = (2 · 𝑘))
14761475eqcomd 2827 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (2 · 𝑘) = (((2 · 𝑘) − 1) + 1))
14771472, 1476breqtrd 5084 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 2 ∥ (((2 · 𝑘) − 1) + 1))
1478 oddp1even 15687 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑘) − 1) ∈ ℤ → (¬ 2 ∥ ((2 · 𝑘) − 1) ↔ 2 ∥ (((2 · 𝑘) − 1) + 1)))
147920, 1478syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (¬ 2 ∥ ((2 · 𝑘) − 1) ↔ 2 ∥ (((2 · 𝑘) − 1) + 1)))
14801477, 1479mpbird 259 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ¬ 2 ∥ ((2 · 𝑘) − 1))
14811480iffalsed 4477 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → if(2 ∥ ((2 · 𝑘) − 1), 0, ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋)))) = ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋))))
148252a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → π ∈ ℂ)
148321, 1482mulcomd 10656 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (((2 · 𝑘) − 1) · π) = (π · ((2 · 𝑘) − 1)))
14841483oveq2d 7166 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (4 / (((2 · 𝑘) − 1) · π)) = (4 / (π · ((2 · 𝑘) − 1))))
148554a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 4 ∈ ℂ)
148669a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → π ≠ 0)
14871485, 1482, 21, 1486, 49divdiv1d 11441 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → ((4 / π) / ((2 · 𝑘) − 1)) = (4 / (π · ((2 · 𝑘) − 1))))
14881484, 1487eqtr4d 2859 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (4 / (((2 · 𝑘) − 1) · π)) = ((4 / π) / ((2 · 𝑘) − 1)))
14891488oveq1d 7165 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋))) = (((4 / π) / ((2 · 𝑘) − 1)) · (sin‘(((2 · 𝑘) − 1) · 𝑋))))
14901485, 1482, 1486divcld 11410 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (4 / π) ∈ ℂ)
14911490, 21, 26, 49div32d 11433 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((4 / π) / ((2 · 𝑘) − 1)) · (sin‘(((2 · 𝑘) − 1) · 𝑋))) = ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))))
14921489, 1491eqtrd 2856 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((4 / (((2 · 𝑘) − 1) · π)) · (sin‘(((2 · 𝑘) − 1) · 𝑋))) = ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))))
14931470, 1481, 14923eqtrd 2860 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1)) = ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))))
14941493mpteq2ia 5149 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1))) = (𝑘 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))))
1495 oveq2 7158 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
14961495oveq1d 7165 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((2 · 𝑘) − 1) = ((2 · 𝑛) − 1))
14971496oveq1d 7165 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (((2 · 𝑘) − 1) · 𝑋) = (((2 · 𝑛) − 1) · 𝑋))
14981497fveq2d 6668 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (sin‘(((2 · 𝑘) − 1) · 𝑋)) = (sin‘(((2 · 𝑛) − 1) · 𝑋)))
14991498, 1496oveq12d 7168 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) = ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))
15001499oveq2d 7166 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))
15011500cbvmptv 5161 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))) = (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))
15021494, 1501eqtri 2844 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1))) = (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))
1503 seqeq3 13368 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1))) = (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1)))) = seq1( + , (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))))
15041502, 1503ax-mp 5 . . . . . . . . . . 11 seq1( + , (𝑘 ∈ ℕ ↦ ((𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((4 / (𝑛 · π)) · (sin‘(𝑛 · 𝑋)))))‘((2 · 𝑘) − 1)))) = seq1( + , (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))))
1505 fouriersw.y . . . . . . . . . . . . 13 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋))
1506110, 104, 22, 1505fourierswlem 42509 . . . . . . . . . . . 12 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)
15071506eqcomi 2830 . . . . . . . . . . 11 ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2) = 𝑌
15081456, 1504, 15073brtr3i 5087 . . . . . . . . . 10 seq1( + , (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))) ⇝ 𝑌
15091508a1i 11 . . . . . . . . 9 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))) ⇝ 𝑌)
1510 eqid 2821 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) = (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))
151161, 65, 70divcld 11410 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (4 / π) ∈ ℂ)
15121439a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 2 ∈ ℂ)
15131512, 62mulcld 10655 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
1514 id 22 . . . . . . . . . . . . . . . . . 18 ((2 · 𝑛) ∈ ℂ → (2 · 𝑛) ∈ ℂ)
1515 1cnd 10630 . . . . . . . . . . . . . . . . . 18 ((2 · 𝑛) ∈ ℂ → 1 ∈ ℂ)
15161514, 1515subcld 10991 . . . . . . . . . . . . . . . . 17 ((2 · 𝑛) ∈ ℂ → ((2 · 𝑛) − 1) ∈ ℂ)
15171513, 1516syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((2 · 𝑛) − 1) ∈ ℂ)
15181517, 73mulcld 10655 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((2 · 𝑛) − 1) · 𝑋) ∈ ℂ)
15191518sincld 15477 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (sin‘(((2 · 𝑛) − 1) · 𝑋)) ∈ ℂ)
152028a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 2 ∈ ℝ)
1521 nnre 11639 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
15221520, 1521remulcld 10665 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
15231522recnd 10663 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
1524 1cnd 10630 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 1 ∈ ℂ)
15251523, 1524subcld 10991 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((2 · 𝑛) − 1) ∈ ℂ)
1526 1red 10636 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 1 ∈ ℝ)
152735, 1520eqeltrid 2917 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (2 · 1) ∈ ℝ)
1528 1lt2 11802 . . . . . . . . . . . . . . . . . . 19 1 < 2
15291528a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 1 < 2)
15301529, 35breqtrrdi 5100 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 1 < (2 · 1))
153143a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 0 ≤ 2)
1532 nnge1 11659 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
15331526, 1521, 1520, 1531, 1532lemul2ad 11574 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (2 · 1) ≤ (2 · 𝑛))
15341526, 1527, 1522, 1530, 1533ltletrd 10794 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 1 < (2 · 𝑛))
15351526, 1534gtned 10769 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ≠ 1)
15361523, 1524, 1535subne0d 11000 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((2 · 𝑛) − 1) ≠ 0)
15371519, 1525, 1536divcld 11410 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)) ∈ ℂ)
15381511, 1537mulcld 10655 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))) ∈ ℂ)
15391510, 1538fmpti 6870 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))):ℕ⟶ℂ
15401539a1i 11 . . . . . . . . . 10 (⊤ → (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))):ℕ⟶ℂ)
15411540ffvelrnda 6845 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))‘𝑘) ∈ ℂ)
1542 divcan6 11341 . . . . . . . . . . . . . . 15 (((π ∈ ℂ ∧ π ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((π / 4) · (4 / π)) = 1)
154352, 69, 54, 56, 1542mp4an 691 . . . . . . . . . . . . . 14 ((π / 4) · (4 / π)) = 1
15441543eqcomi 2830 . . . . . . . . . . . . 13 1 = ((π / 4) · (4 / π))
15451544oveq1i 7160 . . . . . . . . . . . 12 (1 · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = (((π / 4) · (4 / π)) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))
154650mulid2d 10653 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))
154756a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 4 ≠ 0)
15481482, 1485, 1547divcld 11410 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (π / 4) ∈ ℂ)
15491548, 1490, 50mulassd 10658 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((π / 4) · (4 / π)) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = ((π / 4) · ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))))
15501545, 1546, 15493eqtr3a 2880 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) = ((π / 4) · ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))))
1551 eqidd 2822 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) = (𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))))
15528oveq2d 7166 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))) = ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))))
15531552adantl 484 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))) = ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))))
15541492, 1467eqeltrrdi 2922 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) ∈ V)
15551551, 1553, 10, 1554fvmptd 6769 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))‘𝑘) = ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))))
15561555oveq2d 7166 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((π / 4) · ((𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))‘𝑘)) = ((π / 4) · ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))))
15571556eqcomd 2827 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((π / 4) · ((4 / π) · ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))) = ((π / 4) · ((𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))‘𝑘)))
155813, 1550, 15573eqtrd 2860 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))‘𝑘) = ((π / 4) · ((𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))‘𝑘)))
15591558adantl 484 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))‘𝑘) = ((π / 4) · ((𝑛 ∈ ℕ ↦ ((4 / π) · ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))‘𝑘)))
15601, 2, 58, 1509, 1541, 1559isermulc2 15008 . . . . . . . 8 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ⇝ ((π / 4) · 𝑌))
1561 climrel 14843 . . . . . . . . 9 Rel ⇝
15621561releldmi 5812 . . . . . . . 8 (seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ⇝ ((π / 4) · 𝑌) → seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ∈ dom ⇝ )
15631560, 1562syl 17 . . . . . . 7 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ∈ dom ⇝ )
15641, 2, 14, 51, 1563isumclim2 15107 . . . . . 6 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ⇝ Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)))
15651564mptru 1540 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ⇝ Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))
15661560mptru 1540 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ⇝ ((π / 4) · 𝑌)
1567 climuni 14903 . . . . 5 ((seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ⇝ Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) ∧ seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))) ⇝ ((π / 4) · 𝑌)) → Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) = ((π / 4) · 𝑌))
15681565, 1566, 1567mp2an 690 . . . 4 Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1)) = ((π / 4) · 𝑌)
15691568oveq2i 7161 . . 3 ((4 / π) · Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = ((4 / π) · ((π / 4) · 𝑌))
157054, 52, 69divcli 11376 . . . 4 (4 / π) ∈ ℂ
157152, 54, 56divcli 11376 . . . 4 (π / 4) ∈ ℂ
15721284, 1149eqeltri 2909 . . . . . . 7 (𝐹𝑋) ∈ ℝ
157367, 1572ifcli 4512 . . . . . 6 if((𝑋 mod π) = 0, 0, (𝐹𝑋)) ∈ ℝ
15741505, 1573eqeltri 2909 . . . . 5 𝑌 ∈ ℝ
15751574recni 10649 . . . 4 𝑌 ∈ ℂ
15761570, 1571, 1575mulassi 10646 . . 3 (((4 / π) · (π / 4)) · 𝑌) = ((4 / π) · ((π / 4) · 𝑌))
15771571, 1570, 1543mulcomli 10644 . . . . 5 ((4 / π) · (π / 4)) = 1
15781577oveq1i 7160 . . . 4 (((4 / π) · (π / 4)) · 𝑌) = (1 · 𝑌)
15791575mulid2i 10640 . . . 4 (1 · 𝑌) = 𝑌
15801578, 1579eqtri 2844 . . 3 (((4 / π) · (π / 4)) · 𝑌) = 𝑌
15811569, 1576, 15803eqtr2i 2850 . 2 ((4 / π) · Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = 𝑌
1582 fouriersw.z . . . 4 𝑆 = (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))
1583 seqeq3 13368 . . . 4 (𝑆 = (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))) → seq1( + , 𝑆) = seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))))
15841582, 1583ax-mp 5 . . 3 seq1( + , 𝑆) = seq1( + , (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))))
15851584, 1566eqbrtri 5079 . 2 seq1( + , 𝑆) ⇝ ((π / 4) · 𝑌)
15861581, 1585pm3.2i 473 1 (((4 / π) · Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = 𝑌 ∧ seq1( + , 𝑆) ⇝ ((π / 4) · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wtru 1534  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  ifcif 4466  {csn 4560  {cpr 4562   cuni 4831   class class class wbr 5058  cmpt 5138  dom cdm 5549  ran crn 5550  cres 5551  wf 6345  cfv 6349  (class class class)co 7150  Fincfn 8503  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  2c2 11686  4c4 11688  0cn0 11891  cz 11975  +crp 12383  (,)cioo 12732  (,]cioc 12733  [,)cico 12734   mod cmo 13231  seqcseq 13363  cli 14835  Σcsu 15036  sincsin 15411  cosccos 15412  πcpi 15414  cdvds 15601  t crest 16688  TopOpenctopn 16689  topGenctg 16705  fldccnfld 20539  Topctop 21495  intcnt 21619  limPtclp 21736   CnP ccnp 21827  cnccncf 23478  citg 24213   lim climc 24454   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-symdif 4218  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-dvds 15602  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-t1 21916  df-haus 21917  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216  df-ibl 24217  df-itg 24218  df-0p 24265  df-ditg 24439  df-limc 24458  df-dv 24459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator