Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem2 Structured version   Visualization version   GIF version

Theorem etransclem2 41952
Description: Derivative of 𝐺. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem2.xf 𝑥𝐹
etransclem2.f (𝜑𝐹:ℝ⟶ℂ)
etransclem2.dvnf ((𝜑𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)
etransclem2.g 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
Assertion
Ref Expression
etransclem2 (𝜑 → (ℝ D 𝐺) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
Distinct variable groups:   𝑖,𝐹   𝑅,𝑖,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥,𝑖)

Proof of Theorem etransclem2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 etransclem2.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
21oveq2i 6981 . 2 (ℝ D 𝐺) = (ℝ D (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)))
3 eqid 2772 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
43tgioo2 23108 . . 3 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5 reelprrecn 10421 . . . 4 ℝ ∈ {ℝ, ℂ}
65a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
7 reopn 40984 . . . 4 ℝ ∈ (topGen‘ran (,))
87a1i 11 . . 3 (𝜑 → ℝ ∈ (topGen‘ran (,)))
9 fzfid 13150 . . 3 (𝜑 → (0...𝑅) ∈ Fin)
10 fzelp1 12769 . . . . . 6 (𝑖 ∈ (0...𝑅) → 𝑖 ∈ (0...(𝑅 + 1)))
11 etransclem2.dvnf . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)
1210, 11sylan2 583 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)
13123adant3 1112 . . . 4 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)
14 simp3 1118 . . . 4 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1513, 14ffvelrnd 6671 . . 3 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥) ∈ ℂ)
16 fzp1elp1 12770 . . . . . 6 (𝑖 ∈ (0...𝑅) → (𝑖 + 1) ∈ (0...(𝑅 + 1)))
17 ovex 7002 . . . . . . 7 (𝑖 + 1) ∈ V
18 eleq1 2847 . . . . . . . . 9 (𝑗 = (𝑖 + 1) → (𝑗 ∈ (0...(𝑅 + 1)) ↔ (𝑖 + 1) ∈ (0...(𝑅 + 1))))
1918anbi2d 619 . . . . . . . 8 (𝑗 = (𝑖 + 1) → ((𝜑𝑗 ∈ (0...(𝑅 + 1))) ↔ (𝜑 ∧ (𝑖 + 1) ∈ (0...(𝑅 + 1)))))
20 fveq2 6493 . . . . . . . . 9 (𝑗 = (𝑖 + 1) → ((ℝ D𝑛 𝐹)‘𝑗) = ((ℝ D𝑛 𝐹)‘(𝑖 + 1)))
2120feq1d 6323 . . . . . . . 8 (𝑗 = (𝑖 + 1) → (((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ ↔ ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ))
2219, 21imbi12d 337 . . . . . . 7 (𝑗 = (𝑖 + 1) → (((𝜑𝑗 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ)))
23 eleq1 2847 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖 ∈ (0...(𝑅 + 1)) ↔ 𝑗 ∈ (0...(𝑅 + 1))))
2423anbi2d 619 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0...(𝑅 + 1))) ↔ (𝜑𝑗 ∈ (0...(𝑅 + 1)))))
25 fveq2 6493 . . . . . . . . . 10 (𝑖 = 𝑗 → ((ℝ D𝑛 𝐹)‘𝑖) = ((ℝ D𝑛 𝐹)‘𝑗))
2625feq1d 6323 . . . . . . . . 9 (𝑖 = 𝑗 → (((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ ↔ ((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ))
2724, 26imbi12d 337 . . . . . . . 8 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ) ↔ ((𝜑𝑗 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ)))
2827, 11chvarv 2327 . . . . . . 7 ((𝜑𝑗 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ)
2917, 22, 28vtocl 3472 . . . . . 6 ((𝜑 ∧ (𝑖 + 1) ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ)
3016, 29sylan2 583 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ)
31303adant3 1112 . . . 4 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ)
3231, 14ffvelrnd 6671 . . 3 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) ∈ ℂ)
3312ffnd 6339 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘𝑖) Fn ℝ)
34 nfcv 2926 . . . . . . . . . 10 𝑥
35 nfcv 2926 . . . . . . . . . 10 𝑥 D𝑛
36 etransclem2.xf . . . . . . . . . 10 𝑥𝐹
3734, 35, 36nfov 7000 . . . . . . . . 9 𝑥(ℝ D𝑛 𝐹)
38 nfcv 2926 . . . . . . . . 9 𝑥𝑖
3937, 38nffv 6503 . . . . . . . 8 𝑥((ℝ D𝑛 𝐹)‘𝑖)
4039dffn5f 6559 . . . . . . 7 (((ℝ D𝑛 𝐹)‘𝑖) Fn ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑖) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)))
4133, 40sylib 210 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘𝑖) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)))
4241eqcomd 2778 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) = ((ℝ D𝑛 𝐹)‘𝑖))
4342oveq2d 6986 . . . 4 ((𝜑𝑖 ∈ (0...𝑅)) → (ℝ D (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑖)))
44 ax-resscn 10386 . . . . . 6 ℝ ⊆ ℂ
4544a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → ℝ ⊆ ℂ)
46 etransclem2.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℂ)
47 ffdm 6359 . . . . . . . 8 (𝐹:ℝ⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
4846, 47syl 17 . . . . . . 7 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
49 cnex 10410 . . . . . . . . 9 ℂ ∈ V
5049a1i 11 . . . . . . . 8 (𝜑 → ℂ ∈ V)
51 reex 10420 . . . . . . . 8 ℝ ∈ V
52 elpm2g 8217 . . . . . . . 8 ((ℂ ∈ V ∧ ℝ ∈ V) → (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)))
5350, 51, 52sylancl 577 . . . . . . 7 (𝜑 → (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)))
5448, 53mpbird 249 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
5554adantr 473 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → 𝐹 ∈ (ℂ ↑pm ℝ))
56 elfznn0 12810 . . . . . 6 (𝑖 ∈ (0...𝑅) → 𝑖 ∈ ℕ0)
5756adantl 474 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → 𝑖 ∈ ℕ0)
58 dvnp1 24219 . . . . 5 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑖 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑖)))
5945, 55, 57, 58syl3anc 1351 . . . 4 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑖)))
6030ffnd 6339 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) Fn ℝ)
61 nfcv 2926 . . . . . . 7 𝑥(𝑖 + 1)
6237, 61nffv 6503 . . . . . 6 𝑥((ℝ D𝑛 𝐹)‘(𝑖 + 1))
6362dffn5f 6559 . . . . 5 (((ℝ D𝑛 𝐹)‘(𝑖 + 1)) Fn ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
6460, 63sylib 210 . . . 4 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
6543, 59, 643eqtr2d 2814 . . 3 ((𝜑𝑖 ∈ (0...𝑅)) → (ℝ D (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
664, 3, 6, 8, 9, 15, 32, 65dvmptfsum 24269 . 2 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
672, 66syl5eq 2820 1 (𝜑 → (ℝ D 𝐺) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wnfc 2910  Vcvv 3409  wss 3823  {cpr 4437  cmpt 5002  dom cdm 5401  ran crn 5402   Fn wfn 6177  wf 6178  cfv 6182  (class class class)co 6970  pm cpm 8201  cc 10327  cr 10328  0cc0 10329  1c1 10330   + caddc 10332  0cn0 11701  (,)cioo 12548  ...cfz 12702  Σcsu 14897  TopOpenctopn 16545  topGenctg 16561  fldccnfld 20241   D cdv 24158   D𝑛 cdvn 24159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8892  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407  ax-addf 10408
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-se 5361  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7495  df-2nd 7496  df-supp 7628  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-2o 7900  df-oadd 7903  df-er 8083  df-map 8202  df-pm 8203  df-ixp 8254  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-fsupp 8623  df-fi 8664  df-sup 8695  df-inf 8696  df-oi 8763  df-card 9156  df-cda 9382  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-z 11788  df-dec 11906  df-uz 12053  df-q 12157  df-rp 12199  df-xneg 12318  df-xadd 12319  df-xmul 12320  df-ioo 12552  df-icc 12555  df-fz 12703  df-fzo 12844  df-seq 13179  df-exp 13239  df-hash 13500  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-clim 14700  df-sum 14898  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-mulr 16429  df-starv 16430  df-sca 16431  df-vsca 16432  df-ip 16433  df-tset 16434  df-ple 16435  df-ds 16437  df-unif 16438  df-hom 16439  df-cco 16440  df-rest 16546  df-topn 16547  df-0g 16565  df-gsum 16566  df-topgen 16567  df-pt 16568  df-prds 16571  df-xrs 16625  df-qtop 16630  df-imas 16631  df-xps 16633  df-mre 16709  df-mrc 16710  df-acs 16712  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-submnd 17798  df-mulg 18006  df-cntz 18212  df-cmn 18662  df-psmet 20233  df-xmet 20234  df-met 20235  df-bl 20236  df-mopn 20237  df-fbas 20238  df-fg 20239  df-cnfld 20242  df-top 21200  df-topon 21217  df-topsp 21239  df-bases 21252  df-cld 21325  df-ntr 21326  df-cls 21327  df-nei 21404  df-lp 21442  df-perf 21443  df-cn 21533  df-cnp 21534  df-haus 21621  df-tx 21868  df-hmeo 22061  df-fil 22152  df-fm 22244  df-flim 22245  df-flf 22246  df-xms 22627  df-ms 22628  df-tms 22629  df-cncf 23183  df-limc 24161  df-dv 24162  df-dvn 24163
This theorem is referenced by:  etransclem46  41996
  Copyright terms: Public domain W3C validator