MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4f1o Structured version   Visualization version   GIF version

Theorem s4f1o 14271
Description: A length 4 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s4f1o (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))

Proof of Theorem s4f1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oun2prg 14270 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
21imp 410 . . . . 5 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
32adantr 484 . . . 4 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
4 s4prop 14263 . . . . . . . . 9 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
54adantr 484 . . . . . . . 8 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
65eqeq2d 2809 . . . . . . 7 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ ↔ 𝐸 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})))
76biimpa 480 . . . . . 6 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
87eqcomd 2804 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = 𝐸)
9 eqidd 2799 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({0, 1} ∪ {2, 3}) = ({0, 1} ∪ {2, 3}))
10 eqidd 2799 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
118, 9, 10f1oeq123d 6585 . . . 4 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ 𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
123, 11mpbid 235 . . 3 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
13 dff1o5 6599 . . . . . . 7 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
14 dff12 6548 . . . . . . . . 9 (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
1514bicomi 227 . . . . . . . 8 ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ↔ 𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
1615anbi1i 626 . . . . . . 7 (((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) ↔ (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
1713, 16sylbb2 241 . . . . . 6 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
18 ffdm 6510 . . . . . . . . 9 (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ dom 𝐸 ⊆ ({0, 1} ∪ {2, 3})))
1918simpld 498 . . . . . . . 8 (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → 𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2019anim1i 617 . . . . . . 7 ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) → (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
2120anim1i 617 . . . . . 6 (((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) → ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2217, 21syl 17 . . . . 5 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
23 dff12 6548 . . . . . 6 (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
2423anbi1i 626 . . . . 5 ((𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) ↔ ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2522, 24sylibr 237 . . . 4 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
26 dff1o5 6599 . . . 4 (𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2725, 26sylibr 237 . . 3 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2812, 27syl 17 . 2 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2928exp31 423 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  ∃*wmo 2596  wne 2987  cun 3879  wss 3881  {cpr 4527  cop 4531   class class class wbr 5030  dom cdm 5519  ran crn 5520  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  0cc0 10526  1c1 10527  2c2 11680  3c3 11681  ⟨“cs4 14196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-s4 14203
This theorem is referenced by:  usgrexmplef  27049  usgrexmpledg  27052
  Copyright terms: Public domain W3C validator