MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4f1o Structured version   Visualization version   GIF version

Theorem s4f1o 14282
Description: A length 4 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s4f1o (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))

Proof of Theorem s4f1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oun2prg 14281 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
21imp 409 . . . . 5 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
32adantr 483 . . . 4 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
4 s4prop 14274 . . . . . . . . 9 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
54adantr 483 . . . . . . . 8 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
65eqeq2d 2834 . . . . . . 7 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ ↔ 𝐸 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})))
76biimpa 479 . . . . . 6 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
87eqcomd 2829 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = 𝐸)
9 eqidd 2824 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({0, 1} ∪ {2, 3}) = ({0, 1} ∪ {2, 3}))
10 eqidd 2824 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
118, 9, 10f1oeq123d 6612 . . . 4 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ 𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
123, 11mpbid 234 . . 3 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
13 dff1o5 6626 . . . . . . 7 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
14 dff12 6576 . . . . . . . . 9 (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
1514bicomi 226 . . . . . . . 8 ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ↔ 𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
1615anbi1i 625 . . . . . . 7 (((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) ↔ (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
1713, 16sylbb2 240 . . . . . 6 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
18 ffdm 6538 . . . . . . . . 9 (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ dom 𝐸 ⊆ ({0, 1} ∪ {2, 3})))
1918simpld 497 . . . . . . . 8 (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → 𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2019anim1i 616 . . . . . . 7 ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) → (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
2120anim1i 616 . . . . . 6 (((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) → ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2217, 21syl 17 . . . . 5 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
23 dff12 6576 . . . . . 6 (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
2423anbi1i 625 . . . . 5 ((𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) ↔ ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2522, 24sylibr 236 . . . 4 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
26 dff1o5 6626 . . . 4 (𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2725, 26sylibr 236 . . 3 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2812, 27syl 17 . 2 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2928exp31 422 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  ∃*wmo 2620  wne 3018  cun 3936  wss 3938  {cpr 4571  cop 4575   class class class wbr 5068  dom cdm 5557  ran crn 5558  wf 6353  1-1wf1 6354  1-1-ontowf1o 6356  0cc0 10539  1c1 10540  2c2 11695  3c3 11696  ⟨“cs4 14207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-s4 14214
This theorem is referenced by:  usgrexmplef  27043  usgrexmpledg  27046
  Copyright terms: Public domain W3C validator