MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4f1o Structured version   Visualization version   GIF version

Theorem s4f1o 14884
Description: A length 4 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s4f1o (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))

Proof of Theorem s4f1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oun2prg 14883 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
21imp 406 . . . . 5 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
32adantr 480 . . . 4 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
4 s4prop 14876 . . . . . . . . 9 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
54adantr 480 . . . . . . . 8 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
65eqeq2d 2740 . . . . . . 7 ((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ ↔ 𝐸 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})))
76biimpa 476 . . . . . 6 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸 = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
87eqcomd 2735 . . . . 5 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}) = 𝐸)
98f1oeq1d 6795 . . . 4 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ 𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
103, 9mpbid 232 . . 3 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
11 dff1o5 6809 . . . . . . 7 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
12 dff12 6755 . . . . . . . . 9 (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
1312bicomi 224 . . . . . . . 8 ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ↔ 𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
1413anbi1i 624 . . . . . . 7 (((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) ↔ (𝐸:({0, 1} ∪ {2, 3})–1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
1511, 14sylbb2 238 . . . . . 6 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
16 ffdm 6717 . . . . . . . . 9 (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ dom 𝐸 ⊆ ({0, 1} ∪ {2, 3})))
1716simpld 494 . . . . . . . 8 (𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → 𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
1817anim1i 615 . . . . . . 7 ((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) → (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
1918anim1i 615 . . . . . 6 (((𝐸:({0, 1} ∪ {2, 3})⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) → ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2015, 19syl 17 . . . . 5 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
21 dff12 6755 . . . . . 6 (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦))
2221anbi1i 624 . . . . 5 ((𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})) ↔ ((𝐸:dom 𝐸⟶({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ∀𝑦∃*𝑥 𝑥𝐸𝑦) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2320, 22sylibr 234 . . . 4 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
24 dff1o5 6809 . . . 4 (𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ↔ (𝐸:dom 𝐸1-1→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) ∧ ran 𝐸 = ({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
2523, 24sylibr 234 . . 3 (𝐸:({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}) → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2610, 25syl 17 . 2 (((((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) ∧ 𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩) → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
2726exp31 419 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  wne 2925  cun 3912  wss 3914  {cpr 4591  cop 4595   class class class wbr 5107  dom cdm 5638  ran crn 5639  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  0cc0 11068  1c1 11069  2c2 12241  3c3 12242  ⟨“cs4 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-s4 14816
This theorem is referenced by:  usgrexmplef  29186  usgrexmpledg  29189  gpgprismgr4cycllem2  48086
  Copyright terms: Public domain W3C validator