| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffdm 6680 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3902 dom cdm 5616 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3919 df-fn 6484 df-f 6485 |
| This theorem is referenced by: ordtypelem5 9408 ablfaclem2 20001 ablfac2 20004 f1lindf 21760 lmcnp 23220 upgr1e 29092 upgrres1 29292 umgrres1 29293 umgr2v2e 29505 pliguhgr 30464 s3f1 32926 ccatf1 32928 swrdf1 32935 tocyccntz 33111 dfac21 43105 xlimmnfvlem1 45876 xlimpnfvlem1 45880 itgperiod 46025 issmfd 46779 issmfdf 46781 cnfsmf 46784 issmfled 46801 issmfgtd 46805 smfsuplem1 46855 upgrimwlklem2 47935 upgrimtrlslem1 47941 upgrimtrlslem2 47942 |
| Copyright terms: Public domain | W3C validator |