MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffdmd Structured version   Visualization version   GIF version

Theorem ffdmd 6778
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ffdmd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffdmd (𝜑𝐹:dom 𝐹𝐵)

Proof of Theorem ffdmd
StepHypRef Expression
1 ffdmd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffdm 6777 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
31, 2syl 17 . 2 (𝜑 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
43simpld 494 1 (𝜑𝐹:dom 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3976  dom cdm 5700  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993  df-fn 6576  df-f 6577
This theorem is referenced by:  ordtypelem5  9591  ablfaclem2  20130  ablfac2  20133  f1lindf  21865  lmcnp  23333  upgr1e  29148  upgrres1  29348  umgrres1  29349  umgr2v2e  29561  pliguhgr  30518  s3f1  32913  ccatf1  32915  swrdf1  32923  tocyccntz  33137  dfac21  43023  xlimmnfvlem1  45753  xlimpnfvlem1  45757  itgperiod  45902  issmfd  46656  issmfdf  46658  cnfsmf  46661  issmfled  46678  issmfgtd  46682  smfsuplem1  46732
  Copyright terms: Public domain W3C validator