| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffdm 6740 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3931 dom cdm 5659 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ss 3948 df-fn 6539 df-f 6540 |
| This theorem is referenced by: ordtypelem5 9541 ablfaclem2 20074 ablfac2 20077 f1lindf 21787 lmcnp 23247 upgr1e 29097 upgrres1 29297 umgrres1 29298 umgr2v2e 29510 pliguhgr 30472 s3f1 32927 ccatf1 32929 swrdf1 32937 tocyccntz 33160 dfac21 43057 xlimmnfvlem1 45828 xlimpnfvlem1 45832 itgperiod 45977 issmfd 46731 issmfdf 46733 cnfsmf 46736 issmfled 46753 issmfgtd 46757 smfsuplem1 46807 upgrimwlklem2 47878 upgrimtrlslem1 47884 upgrimtrlslem2 47885 |
| Copyright terms: Public domain | W3C validator |