|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| Ref | Expression | 
|---|---|
| ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffdm 6764 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | 
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3950 dom cdm 5684 ⟶wf 6556 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ss 3967 df-fn 6563 df-f 6564 | 
| This theorem is referenced by: ordtypelem5 9563 ablfaclem2 20107 ablfac2 20110 f1lindf 21843 lmcnp 23313 upgr1e 29131 upgrres1 29331 umgrres1 29332 umgr2v2e 29544 pliguhgr 30506 s3f1 32932 ccatf1 32934 swrdf1 32942 tocyccntz 33165 dfac21 43083 xlimmnfvlem1 45852 xlimpnfvlem1 45856 itgperiod 46001 issmfd 46755 issmfdf 46757 cnfsmf 46760 issmfled 46777 issmfgtd 46781 smfsuplem1 46831 | 
| Copyright terms: Public domain | W3C validator |