![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffdm 6777 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 dom cdm 5700 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-fn 6576 df-f 6577 |
This theorem is referenced by: ordtypelem5 9591 ablfaclem2 20130 ablfac2 20133 f1lindf 21865 lmcnp 23333 upgr1e 29148 upgrres1 29348 umgrres1 29349 umgr2v2e 29561 pliguhgr 30518 s3f1 32913 ccatf1 32915 swrdf1 32923 tocyccntz 33137 dfac21 43023 xlimmnfvlem1 45753 xlimpnfvlem1 45757 itgperiod 45902 issmfd 46656 issmfdf 46658 cnfsmf 46661 issmfled 46678 issmfgtd 46682 smfsuplem1 46732 |
Copyright terms: Public domain | W3C validator |