MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffdmd Structured version   Visualization version   GIF version

Theorem ffdmd 6741
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ffdmd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffdmd (𝜑𝐹:dom 𝐹𝐵)

Proof of Theorem ffdmd
StepHypRef Expression
1 ffdmd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffdm 6740 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
31, 2syl 17 . 2 (𝜑 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
43simpld 494 1 (𝜑𝐹:dom 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3931  dom cdm 5659  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2728  df-ss 3948  df-fn 6539  df-f 6540
This theorem is referenced by:  ordtypelem5  9541  ablfaclem2  20074  ablfac2  20077  f1lindf  21787  lmcnp  23247  upgr1e  29097  upgrres1  29297  umgrres1  29298  umgr2v2e  29510  pliguhgr  30472  s3f1  32927  ccatf1  32929  swrdf1  32937  tocyccntz  33160  dfac21  43057  xlimmnfvlem1  45828  xlimpnfvlem1  45832  itgperiod  45977  issmfd  46731  issmfdf  46733  cnfsmf  46736  issmfled  46753  issmfgtd  46757  smfsuplem1  46807  upgrimwlklem2  47878  upgrimtrlslem1  47884  upgrimtrlslem2  47885
  Copyright terms: Public domain W3C validator