MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffdmd Structured version   Visualization version   GIF version

Theorem ffdmd 6688
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ffdmd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffdmd (𝜑𝐹:dom 𝐹𝐵)

Proof of Theorem ffdmd
StepHypRef Expression
1 ffdmd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffdm 6687 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
31, 2syl 17 . 2 (𝜑 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
43simpld 494 1 (𝜑𝐹:dom 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3898  dom cdm 5621  wf 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2725  df-ss 3915  df-fn 6491  df-f 6492
This theorem is referenced by:  ordtypelem5  9417  ablfaclem2  20004  ablfac2  20007  f1lindf  21763  lmcnp  23222  upgr1e  29095  upgrres1  29295  umgrres1  29296  umgr2v2e  29508  pliguhgr  30470  s3f1  32937  ccatf1  32939  swrdf1  32946  tocyccntz  33122  dfac21  43186  xlimmnfvlem1  45957  xlimpnfvlem1  45961  itgperiod  46106  issmfd  46860  issmfdf  46862  cnfsmf  46865  issmfled  46882  issmfgtd  46886  smfsuplem1  46936  upgrimwlklem2  48025  upgrimtrlslem1  48031  upgrimtrlslem2  48032
  Copyright terms: Public domain W3C validator