| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffdm 6685 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 dom cdm 5623 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 df-fn 6489 df-f 6490 |
| This theorem is referenced by: ordtypelem5 9433 ablfaclem2 19985 ablfac2 19988 f1lindf 21747 lmcnp 23207 upgr1e 29076 upgrres1 29276 umgrres1 29277 umgr2v2e 29489 pliguhgr 30448 s3f1 32901 ccatf1 32903 swrdf1 32911 tocyccntz 33099 dfac21 43039 xlimmnfvlem1 45814 xlimpnfvlem1 45818 itgperiod 45963 issmfd 46717 issmfdf 46719 cnfsmf 46722 issmfled 46739 issmfgtd 46743 smfsuplem1 46793 upgrimwlklem2 47883 upgrimtrlslem1 47889 upgrimtrlslem2 47890 |
| Copyright terms: Public domain | W3C validator |