MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffdmd Structured version   Visualization version   GIF version

Theorem ffdmd 6765
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ffdmd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
ffdmd (𝜑𝐹:dom 𝐹𝐵)

Proof of Theorem ffdmd
StepHypRef Expression
1 ffdmd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffdm 6764 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
31, 2syl 17 . 2 (𝜑 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
43simpld 494 1 (𝜑𝐹:dom 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3950  dom cdm 5684  wf 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2728  df-ss 3967  df-fn 6563  df-f 6564
This theorem is referenced by:  ordtypelem5  9563  ablfaclem2  20107  ablfac2  20110  f1lindf  21843  lmcnp  23313  upgr1e  29131  upgrres1  29331  umgrres1  29332  umgr2v2e  29544  pliguhgr  30506  s3f1  32932  ccatf1  32934  swrdf1  32942  tocyccntz  33165  dfac21  43083  xlimmnfvlem1  45852  xlimpnfvlem1  45856  itgperiod  46001  issmfd  46755  issmfdf  46757  cnfsmf  46760  issmfled  46777  issmfgtd  46781  smfsuplem1  46831
  Copyright terms: Public domain W3C validator