| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffdm 6687 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3898 dom cdm 5621 ⟶wf 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-fn 6491 df-f 6492 |
| This theorem is referenced by: ordtypelem5 9417 ablfaclem2 20004 ablfac2 20007 f1lindf 21763 lmcnp 23222 upgr1e 29095 upgrres1 29295 umgrres1 29296 umgr2v2e 29508 pliguhgr 30470 s3f1 32937 ccatf1 32939 swrdf1 32946 tocyccntz 33122 dfac21 43186 xlimmnfvlem1 45957 xlimpnfvlem1 45961 itgperiod 46106 issmfd 46860 issmfdf 46862 cnfsmf 46865 issmfled 46882 issmfgtd 46886 smfsuplem1 46936 upgrimwlklem2 48025 upgrimtrlslem1 48031 upgrimtrlslem2 48032 |
| Copyright terms: Public domain | W3C validator |