Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffdm 6630 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
4 | 3 | simpld 495 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊆ wss 3887 dom cdm 5589 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-fn 6436 df-f 6437 |
This theorem is referenced by: ordtypelem5 9281 ablfaclem2 19689 ablfac2 19692 f1lindf 21029 lmcnp 22455 upgr1e 27483 upgrres1 27680 umgrres1 27681 umgr2v2e 27892 pliguhgr 28848 s3f1 31221 ccatf1 31223 swrdf1 31228 tocyccntz 31411 dfac21 40891 xlimmnfvlem1 43373 xlimpnfvlem1 43377 itgperiod 43522 issmfd 44271 issmfdf 44273 cnfsmf 44276 issmfled 44293 issmfgtd 44296 smfsuplem1 44344 |
Copyright terms: Public domain | W3C validator |