![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffdm 6766 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3963 dom cdm 5689 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 df-fn 6566 df-f 6567 |
This theorem is referenced by: ordtypelem5 9560 ablfaclem2 20121 ablfac2 20124 f1lindf 21860 lmcnp 23328 upgr1e 29145 upgrres1 29345 umgrres1 29346 umgr2v2e 29558 pliguhgr 30515 s3f1 32916 ccatf1 32918 swrdf1 32926 tocyccntz 33147 dfac21 43055 xlimmnfvlem1 45788 xlimpnfvlem1 45792 itgperiod 45937 issmfd 46691 issmfdf 46693 cnfsmf 46696 issmfled 46713 issmfgtd 46717 smfsuplem1 46767 |
Copyright terms: Public domain | W3C validator |