| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffdm 6717 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3914 dom cdm 5638 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-fn 6514 df-f 6515 |
| This theorem is referenced by: ordtypelem5 9475 ablfaclem2 20018 ablfac2 20021 f1lindf 21731 lmcnp 23191 upgr1e 29040 upgrres1 29240 umgrres1 29241 umgr2v2e 29453 pliguhgr 30415 s3f1 32868 ccatf1 32870 swrdf1 32878 tocyccntz 33101 dfac21 43055 xlimmnfvlem1 45830 xlimpnfvlem1 45834 itgperiod 45979 issmfd 46733 issmfdf 46735 cnfsmf 46738 issmfled 46755 issmfgtd 46759 smfsuplem1 46809 upgrimwlklem2 47895 upgrimtrlslem1 47901 upgrimtrlslem2 47902 |
| Copyright terms: Public domain | W3C validator |