Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funssxp | Structured version Visualization version GIF version |
Description: Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.) |
Ref | Expression |
---|---|
funssxp | ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6369 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 219 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | rnss 5782 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
4 | rnxpss 6004 | . . . . . 6 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
5 | 3, 4 | sstrdi 3889 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
6 | 2, 5 | anim12i 616 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
7 | df-f 6343 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) | |
8 | 6, 7 | sylibr 237 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:dom 𝐹⟶𝐵) |
9 | dmss 5745 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵)) | |
10 | dmxpss 6003 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
11 | 9, 10 | sstrdi 3889 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ 𝐴) |
12 | 11 | adantl 485 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → dom 𝐹 ⊆ 𝐴) |
13 | 8, 12 | jca 515 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
14 | ffun 6507 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → Fun 𝐹) | |
15 | 14 | adantr 484 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → Fun 𝐹) |
16 | fssxp 6532 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × 𝐵)) | |
17 | xpss1 5544 | . . . 4 ⊢ (dom 𝐹 ⊆ 𝐴 → (dom 𝐹 × 𝐵) ⊆ (𝐴 × 𝐵)) | |
18 | 16, 17 | sylan9ss 3890 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → 𝐹 ⊆ (𝐴 × 𝐵)) |
19 | 15, 18 | jca 515 | . 2 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → (Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
20 | 13, 19 | impbii 212 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ⊆ wss 3843 × cxp 5523 dom cdm 5525 ran crn 5526 Fun wfun 6333 Fn wfn 6334 ⟶wf 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-cnv 5533 df-dm 5535 df-rn 5536 df-fun 6341 df-fn 6342 df-f 6343 |
This theorem is referenced by: elpm2g 8456 volf 24283 |
Copyright terms: Public domain | W3C validator |