![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funssxp | Structured version Visualization version GIF version |
Description: Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.) |
Ref | Expression |
---|---|
funssxp | ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6578 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 215 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | rnss 5938 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
4 | rnxpss 6171 | . . . . . 6 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
5 | 3, 4 | sstrdi 3994 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
6 | 2, 5 | anim12i 612 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
7 | df-f 6547 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:dom 𝐹⟶𝐵) |
9 | dmss 5902 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵)) | |
10 | dmxpss 6170 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
11 | 9, 10 | sstrdi 3994 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ 𝐴) |
12 | 11 | adantl 481 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → dom 𝐹 ⊆ 𝐴) |
13 | 8, 12 | jca 511 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
14 | ffun 6720 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → Fun 𝐹) | |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → Fun 𝐹) |
16 | fssxp 6745 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × 𝐵)) | |
17 | xpss1 5695 | . . . 4 ⊢ (dom 𝐹 ⊆ 𝐴 → (dom 𝐹 × 𝐵) ⊆ (𝐴 × 𝐵)) | |
18 | 16, 17 | sylan9ss 3995 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → 𝐹 ⊆ (𝐴 × 𝐵)) |
19 | 15, 18 | jca 511 | . 2 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → (Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
20 | 13, 19 | impbii 208 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊆ wss 3948 × cxp 5674 dom cdm 5676 ran crn 5677 Fun wfun 6537 Fn wfn 6538 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: elpm2g 8844 volf 25378 dfno2 42642 |
Copyright terms: Public domain | W3C validator |