| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funssxp | Structured version Visualization version GIF version | ||
| Description: Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.) |
| Ref | Expression |
|---|---|
| funssxp | ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6507 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | 1 | biimpi 216 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
| 3 | rnss 5876 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
| 4 | rnxpss 6116 | . . . . . 6 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
| 5 | 3, 4 | sstrdi 3945 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
| 6 | 2, 5 | anim12i 613 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
| 7 | df-f 6481 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:dom 𝐹⟶𝐵) |
| 9 | dmss 5840 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵)) | |
| 10 | dmxpss 6115 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
| 11 | 9, 10 | sstrdi 3945 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ 𝐴) |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → dom 𝐹 ⊆ 𝐴) |
| 13 | 8, 12 | jca 511 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| 14 | ffun 6650 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → Fun 𝐹) | |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → Fun 𝐹) |
| 16 | fssxp 6674 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × 𝐵)) | |
| 17 | xpss1 5633 | . . . 4 ⊢ (dom 𝐹 ⊆ 𝐴 → (dom 𝐹 × 𝐵) ⊆ (𝐴 × 𝐵)) | |
| 18 | 16, 17 | sylan9ss 3946 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 19 | 15, 18 | jca 511 | . 2 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → (Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
| 20 | 13, 19 | impbii 209 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3900 × cxp 5612 dom cdm 5614 ran crn 5615 Fun wfun 6471 Fn wfn 6472 ⟶wf 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-fun 6479 df-fn 6480 df-f 6481 |
| This theorem is referenced by: elpm2g 8763 volf 25450 dfno2 43440 |
| Copyright terms: Public domain | W3C validator |