MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssxp Structured version   Visualization version   GIF version

Theorem funssxp 6739
Description: Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.)
Assertion
Ref Expression
funssxp ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))

Proof of Theorem funssxp
StepHypRef Expression
1 funfn 6571 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 215 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
3 rnss 5931 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
4 rnxpss 6164 . . . . . 6 ran (𝐴 × 𝐵) ⊆ 𝐵
53, 4sstrdi 3989 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
62, 5anim12i 612 . . . 4 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn dom 𝐹 ∧ ran 𝐹𝐵))
7 df-f 6540 . . . 4 (𝐹:dom 𝐹𝐵 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹𝐵))
86, 7sylibr 233 . . 3 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:dom 𝐹𝐵)
9 dmss 5895 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵))
10 dmxpss 6163 . . . . 5 dom (𝐴 × 𝐵) ⊆ 𝐴
119, 10sstrdi 3989 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹𝐴)
1211adantl 481 . . 3 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → dom 𝐹𝐴)
138, 12jca 511 . 2 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
14 ffun 6713 . . . 4 (𝐹:dom 𝐹𝐵 → Fun 𝐹)
1514adantr 480 . . 3 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → Fun 𝐹)
16 fssxp 6738 . . . 4 (𝐹:dom 𝐹𝐵𝐹 ⊆ (dom 𝐹 × 𝐵))
17 xpss1 5688 . . . 4 (dom 𝐹𝐴 → (dom 𝐹 × 𝐵) ⊆ (𝐴 × 𝐵))
1816, 17sylan9ss 3990 . . 3 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → 𝐹 ⊆ (𝐴 × 𝐵))
1915, 18jca 511 . 2 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → (Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)))
2013, 19impbii 208 1 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wss 3943   × cxp 5667  dom cdm 5669  ran crn 5670  Fun wfun 6530   Fn wfn 6531  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676  df-cnv 5677  df-dm 5679  df-rn 5680  df-fun 6538  df-fn 6539  df-f 6540
This theorem is referenced by:  elpm2g  8837  volf  25408  dfno2  42737
  Copyright terms: Public domain W3C validator