![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funssxp | Structured version Visualization version GIF version |
Description: Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.) |
Ref | Expression |
---|---|
funssxp | ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6532 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 215 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | rnss 5895 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵)) | |
4 | rnxpss 6125 | . . . . . 6 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
5 | 3, 4 | sstrdi 3957 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ 𝐵) |
6 | 2, 5 | anim12i 614 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) |
7 | df-f 6501 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵)) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:dom 𝐹⟶𝐵) |
9 | dmss 5859 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵)) | |
10 | dmxpss 6124 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
11 | 9, 10 | sstrdi 3957 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ 𝐴) |
12 | 11 | adantl 483 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → dom 𝐹 ⊆ 𝐴) |
13 | 8, 12 | jca 513 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
14 | ffun 6672 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → Fun 𝐹) | |
15 | 14 | adantr 482 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → Fun 𝐹) |
16 | fssxp 6697 | . . . 4 ⊢ (𝐹:dom 𝐹⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × 𝐵)) | |
17 | xpss1 5653 | . . . 4 ⊢ (dom 𝐹 ⊆ 𝐴 → (dom 𝐹 × 𝐵) ⊆ (𝐴 × 𝐵)) | |
18 | 16, 17 | sylan9ss 3958 | . . 3 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → 𝐹 ⊆ (𝐴 × 𝐵)) |
19 | 15, 18 | jca 513 | . 2 ⊢ ((𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴) → (Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵))) |
20 | 13, 19 | impbii 208 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ⊆ wss 3911 × cxp 5632 dom cdm 5634 ran crn 5635 Fun wfun 6491 Fn wfn 6492 ⟶wf 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-dm 5644 df-rn 5645 df-fun 6499 df-fn 6500 df-f 6501 |
This theorem is referenced by: elpm2g 8785 volf 24909 dfno2 41788 |
Copyright terms: Public domain | W3C validator |