Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinrn Structured version   Visualization version   GIF version

Theorem reprinrn 34616
Description: Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprinrn (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵)))
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑐   𝜑,𝑐   𝐵,𝑐

Proof of Theorem reprinrn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin 6743 . . . . 5 (𝑐:(0..^𝑆)⟶(𝐴𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶𝐵))
2 df-f 6518 . . . . . . 7 (𝑐:(0..^𝑆)⟶𝐵 ↔ (𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵))
3 ffn 6691 . . . . . . . . . 10 (𝑐:(0..^𝑆)⟶𝐴𝑐 Fn (0..^𝑆))
43adantl 481 . . . . . . . . 9 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → 𝑐 Fn (0..^𝑆))
54biantrurd 532 . . . . . . . 8 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → (ran 𝑐𝐵 ↔ (𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵)))
65bicomd 223 . . . . . . 7 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → ((𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵) ↔ ran 𝑐𝐵))
72, 6bitrid 283 . . . . . 6 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → (𝑐:(0..^𝑆)⟶𝐵 ↔ ran 𝑐𝐵))
87pm5.32da 579 . . . . 5 (𝜑 → ((𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
91, 8bitrid 283 . . . 4 (𝜑 → (𝑐:(0..^𝑆)⟶(𝐴𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
10 nnex 12199 . . . . . . . 8 ℕ ∈ V
1110a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
12 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
1311, 12ssexd 5282 . . . . . 6 (𝜑𝐴 ∈ V)
14 inex1g 5277 . . . . . 6 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
1513, 14syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ V)
16 ovex 7423 . . . . 5 (0..^𝑆) ∈ V
17 elmapg 8815 . . . . 5 (((𝐴𝐵) ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴𝐵)))
1815, 16, 17sylancl 586 . . . 4 (𝜑 → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴𝐵)))
19 elmapg 8815 . . . . . 6 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2013, 16, 19sylancl 586 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2120anbi1d 631 . . . 4 (𝜑 → ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
229, 18, 213bitr4d 311 . . 3 (𝜑 → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵)))
2322anbi1d 631 . 2 (𝜑 → ((𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
24 inss1 4203 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
2524, 12sstrid 3961 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ ℕ)
26 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
27 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
2825, 26, 27reprval 34608 . . . 4 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) = {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
2928eleq2d 2815 . . 3 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀}))
30 rabid 3430 . . 3 (𝑐 ∈ {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3129, 30bitrdi 287 . 2 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3212, 26, 27reprval 34608 . . . . . 6 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
3332eleq2d 2815 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑐 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀}))
34 rabid 3430 . . . . 5 (𝑐 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3533, 34bitrdi 287 . . . 4 (𝜑 → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3635anbi1d 631 . . 3 (𝜑 → ((𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ∧ ran 𝑐𝐵)))
37 an32 646 . . 3 (((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3836, 37bitrdi 287 . 2 (𝜑 → ((𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3923, 31, 383bitr4d 311 1 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cin 3916  wss 3917  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  cn 12193  0cn0 12449  cz 12536  ..^cfzo 13622  Σcsu 15659  reprcrepr 34606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-map 8804  df-neg 11415  df-nn 12194  df-z 12537  df-seq 13974  df-sum 15660  df-repr 34607
This theorem is referenced by:  hashreprin  34618
  Copyright terms: Public domain W3C validator