Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinrn Structured version   Visualization version   GIF version

Theorem reprinrn 31506
Description: Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprinrn (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵)))
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑐   𝜑,𝑐   𝐵,𝑐

Proof of Theorem reprinrn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin 6427 . . . . 5 (𝑐:(0..^𝑆)⟶(𝐴𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶𝐵))
2 df-f 6229 . . . . . . 7 (𝑐:(0..^𝑆)⟶𝐵 ↔ (𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵))
3 ffn 6382 . . . . . . . . . 10 (𝑐:(0..^𝑆)⟶𝐴𝑐 Fn (0..^𝑆))
43adantl 482 . . . . . . . . 9 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → 𝑐 Fn (0..^𝑆))
54biantrurd 533 . . . . . . . 8 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → (ran 𝑐𝐵 ↔ (𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵)))
65bicomd 224 . . . . . . 7 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → ((𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵) ↔ ran 𝑐𝐵))
72, 6syl5bb 284 . . . . . 6 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → (𝑐:(0..^𝑆)⟶𝐵 ↔ ran 𝑐𝐵))
87pm5.32da 579 . . . . 5 (𝜑 → ((𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
91, 8syl5bb 284 . . . 4 (𝜑 → (𝑐:(0..^𝑆)⟶(𝐴𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
10 nnex 11492 . . . . . . . 8 ℕ ∈ V
1110a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
12 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
1311, 12ssexd 5119 . . . . . 6 (𝜑𝐴 ∈ V)
14 inex1g 5114 . . . . . 6 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
1513, 14syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ V)
16 ovex 7048 . . . . 5 (0..^𝑆) ∈ V
17 elmapg 8269 . . . . 5 (((𝐴𝐵) ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴𝐵)))
1815, 16, 17sylancl 586 . . . 4 (𝜑 → (𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴𝐵)))
19 elmapg 8269 . . . . . 6 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2013, 16, 19sylancl 586 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2120anbi1d 629 . . . 4 (𝜑 → ((𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ ran 𝑐𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
229, 18, 213bitr4d 312 . . 3 (𝜑 → (𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ↔ (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ ran 𝑐𝐵)))
2322anbi1d 629 . 2 (𝜑 → ((𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ↔ ((𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
24 inss1 4125 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
2524, 12syl5ss 3900 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ ℕ)
26 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
27 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
2825, 26, 27reprval 31498 . . . 4 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) = {𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
2928eleq2d 2868 . . 3 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ {𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀}))
30 rabid 3337 . . 3 (𝑐 ∈ {𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3129, 30syl6bb 288 . 2 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ ((𝐴𝐵) ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3212, 26, 27reprval 31498 . . . . . 6 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
3332eleq2d 2868 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑐 ∈ {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀}))
34 rabid 3337 . . . . 5 (𝑐 ∈ {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3533, 34syl6bb 288 . . . 4 (𝜑 → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3635anbi1d 629 . . 3 (𝜑 → ((𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ∧ ran 𝑐𝐵)))
37 an32 642 . . 3 (((𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3836, 37syl6bb 288 . 2 (𝜑 → ((𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3923, 31, 383bitr4d 312 1 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  {crab 3109  Vcvv 3437  cin 3858  wss 3859  ran crn 5444   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  𝑚 cmap 8256  0cc0 10383  cn 11486  0cn0 11745  cz 11829  ..^cfzo 12883  Σcsu 14876  reprcrepr 31496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-addcl 10443
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-map 8258  df-neg 10720  df-nn 11487  df-z 11830  df-seq 13220  df-sum 14877  df-repr 31497
This theorem is referenced by:  hashreprin  31508
  Copyright terms: Public domain W3C validator