Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinrn Structured version   Visualization version   GIF version

Theorem reprinrn 32598
Description: Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprinrn (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵)))
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑐   𝜑,𝑐   𝐵,𝑐

Proof of Theorem reprinrn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin 6654 . . . . 5 (𝑐:(0..^𝑆)⟶(𝐴𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶𝐵))
2 df-f 6437 . . . . . . 7 (𝑐:(0..^𝑆)⟶𝐵 ↔ (𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵))
3 ffn 6600 . . . . . . . . . 10 (𝑐:(0..^𝑆)⟶𝐴𝑐 Fn (0..^𝑆))
43adantl 482 . . . . . . . . 9 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → 𝑐 Fn (0..^𝑆))
54biantrurd 533 . . . . . . . 8 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → (ran 𝑐𝐵 ↔ (𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵)))
65bicomd 222 . . . . . . 7 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → ((𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵) ↔ ran 𝑐𝐵))
72, 6syl5bb 283 . . . . . 6 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → (𝑐:(0..^𝑆)⟶𝐵 ↔ ran 𝑐𝐵))
87pm5.32da 579 . . . . 5 (𝜑 → ((𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
91, 8syl5bb 283 . . . 4 (𝜑 → (𝑐:(0..^𝑆)⟶(𝐴𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
10 nnex 11979 . . . . . . . 8 ℕ ∈ V
1110a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
12 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
1311, 12ssexd 5248 . . . . . 6 (𝜑𝐴 ∈ V)
14 inex1g 5243 . . . . . 6 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
1513, 14syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ V)
16 ovex 7308 . . . . 5 (0..^𝑆) ∈ V
17 elmapg 8628 . . . . 5 (((𝐴𝐵) ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴𝐵)))
1815, 16, 17sylancl 586 . . . 4 (𝜑 → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴𝐵)))
19 elmapg 8628 . . . . . 6 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2013, 16, 19sylancl 586 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2120anbi1d 630 . . . 4 (𝜑 → ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
229, 18, 213bitr4d 311 . . 3 (𝜑 → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵)))
2322anbi1d 630 . 2 (𝜑 → ((𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
24 inss1 4162 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
2524, 12sstrid 3932 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ ℕ)
26 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
27 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
2825, 26, 27reprval 32590 . . . 4 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) = {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
2928eleq2d 2824 . . 3 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀}))
30 rabid 3310 . . 3 (𝑐 ∈ {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3129, 30bitrdi 287 . 2 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3212, 26, 27reprval 32590 . . . . . 6 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
3332eleq2d 2824 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑐 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀}))
34 rabid 3310 . . . . 5 (𝑐 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3533, 34bitrdi 287 . . . 4 (𝜑 → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3635anbi1d 630 . . 3 (𝜑 → ((𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ∧ ran 𝑐𝐵)))
37 an32 643 . . 3 (((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3836, 37bitrdi 287 . 2 (𝜑 → ((𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3923, 31, 383bitr4d 311 1 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cin 3886  wss 3887  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  cn 11973  0cn0 12233  cz 12319  ..^cfzo 13382  Σcsu 15397  reprcrepr 32588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-map 8617  df-neg 11208  df-nn 11974  df-z 12320  df-seq 13722  df-sum 15398  df-repr 32589
This theorem is referenced by:  hashreprin  32600
  Copyright terms: Public domain W3C validator