Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinrn Structured version   Visualization version   GIF version

Theorem reprinrn 33320
Description: Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprinrn (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵)))
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑐   𝜑,𝑐   𝐵,𝑐

Proof of Theorem reprinrn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin 6727 . . . . 5 (𝑐:(0..^𝑆)⟶(𝐴𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶𝐵))
2 df-f 6505 . . . . . . 7 (𝑐:(0..^𝑆)⟶𝐵 ↔ (𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵))
3 ffn 6673 . . . . . . . . . 10 (𝑐:(0..^𝑆)⟶𝐴𝑐 Fn (0..^𝑆))
43adantl 482 . . . . . . . . 9 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → 𝑐 Fn (0..^𝑆))
54biantrurd 533 . . . . . . . 8 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → (ran 𝑐𝐵 ↔ (𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵)))
65bicomd 222 . . . . . . 7 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → ((𝑐 Fn (0..^𝑆) ∧ ran 𝑐𝐵) ↔ ran 𝑐𝐵))
72, 6bitrid 282 . . . . . 6 ((𝜑𝑐:(0..^𝑆)⟶𝐴) → (𝑐:(0..^𝑆)⟶𝐵 ↔ ran 𝑐𝐵))
87pm5.32da 579 . . . . 5 (𝜑 → ((𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
91, 8bitrid 282 . . . 4 (𝜑 → (𝑐:(0..^𝑆)⟶(𝐴𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
10 nnex 12168 . . . . . . . 8 ℕ ∈ V
1110a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
12 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
1311, 12ssexd 5286 . . . . . 6 (𝜑𝐴 ∈ V)
14 inex1g 5281 . . . . . 6 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
1513, 14syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ V)
16 ovex 7395 . . . . 5 (0..^𝑆) ∈ V
17 elmapg 8785 . . . . 5 (((𝐴𝐵) ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴𝐵)))
1815, 16, 17sylancl 586 . . . 4 (𝜑 → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴𝐵)))
19 elmapg 8785 . . . . . 6 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2013, 16, 19sylancl 586 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2120anbi1d 630 . . . 4 (𝜑 → ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ↔ (𝑐:(0..^𝑆)⟶𝐴 ∧ ran 𝑐𝐵)))
229, 18, 213bitr4d 310 . . 3 (𝜑 → (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵)))
2322anbi1d 630 . 2 (𝜑 → ((𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
24 inss1 4193 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
2524, 12sstrid 3958 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ ℕ)
26 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
27 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
2825, 26, 27reprval 33312 . . . 4 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) = {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
2928eleq2d 2818 . . 3 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀}))
30 rabid 3425 . . 3 (𝑐 ∈ {𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3129, 30bitrdi 286 . 2 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ ((𝐴𝐵) ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3212, 26, 27reprval 33312 . . . . . 6 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
3332eleq2d 2818 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑐 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀}))
34 rabid 3425 . . . . 5 (𝑐 ∈ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3533, 34bitrdi 286 . . . 4 (𝜑 → (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3635anbi1d 630 . . 3 (𝜑 → ((𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ∧ ran 𝑐𝐵)))
37 an32 644 . . 3 (((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
3836, 37bitrdi 286 . 2 (𝜑 → ((𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵) ↔ ((𝑐 ∈ (𝐴m (0..^𝑆)) ∧ ran 𝑐𝐵) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)))
3923, 31, 383bitr4d 310 1 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3405  Vcvv 3446  cin 3912  wss 3913  ran crn 5639   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  m cmap 8772  0cc0 11060  cn 12162  0cn0 12422  cz 12508  ..^cfzo 13577  Σcsu 15582  reprcrepr 33310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-addcl 11120
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-map 8774  df-neg 11397  df-nn 12163  df-z 12509  df-seq 13917  df-sum 15583  df-repr 33311
This theorem is referenced by:  hashreprin  33322
  Copyright terms: Public domain W3C validator