Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinfz1 Structured version   Visualization version   GIF version

Theorem reprinfz1 34616
Description: For the representation of 𝑁, it is sufficient to consider nonnegative integers up to 𝑁. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
reprinfz1.n (𝜑𝑁 ∈ ℕ0)
reprinfz1.s (𝜑𝑆 ∈ ℕ0)
reprinfz1.a (𝜑𝐴 ⊆ ℕ)
Assertion
Ref Expression
reprinfz1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))

Proof of Theorem reprinfz1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12270 . . . . . . . . . . . . 13 ℕ ∈ V
21a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ∈ V)
3 reprinfz1.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 5330 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
5 ovex 7464 . . . . . . . . . . 11 (0..^𝑆) ∈ V
6 elmapg 8878 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
74, 5, 6sylancl 586 . . . . . . . . . 10 (𝜑 → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
87biimpa 476 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
98adantr 480 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶𝐴)
10 elmapfn 8904 . . . . . . . . . . 11 (𝑐 ∈ (𝐴m (0..^𝑆)) → 𝑐 Fn (0..^𝑆))
1110ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 Fn (0..^𝑆))
12 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
13 reprinfz1.n . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ0)
1413nn0red 12586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
1514ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
163ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝐴 ⊆ ℕ)
17 simpllr 776 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐 ∈ (𝐴m (0..^𝑆)))
187ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
1917, 18mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐:(0..^𝑆)⟶𝐴)
20 simplr 769 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑏 ∈ (0..^𝑆))
2119, 20ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ 𝐴)
2216, 21sseldd 3996 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℕ)
2322nnred 12279 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℝ)
24 fzofi 14012 . . . . . . . . . . . . . . . . . . . . 21 (0..^𝑆) ∈ Fin
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (0..^𝑆) ∈ Fin)
263ad4antr 732 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
2719ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2826, 27sseldd 3996 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
2928nnred 12279 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
3025, 29fsumrecl 15767 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
31 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ∈ (1...𝑁))
3213nn0zd 12637 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℤ)
3332ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
34 fznn 13629 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3533, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3622biantrurd 532 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ≤ 𝑁 ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3735, 36bitr4d 282 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ (𝑐𝑏) ≤ 𝑁))
3837notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (¬ (𝑐𝑏) ∈ (1...𝑁) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
3931, 38mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ≤ 𝑁)
4015, 23ltnled 11406 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑁 < (𝑐𝑏) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
4139, 40mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < (𝑐𝑏))
4223recnd 11287 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℂ)
43 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑐𝑎) = (𝑐𝑏))
4443sumsn 15779 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (0..^𝑆) ∧ (𝑐𝑏) ∈ ℂ) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4520, 42, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4628nnnn0d 12585 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ0)
47 nn0ge0 12549 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐𝑎) ∈ ℕ0 → 0 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 0 ≤ (𝑐𝑎))
49 snssi 4813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (0..^𝑆) → {𝑏} ⊆ (0..^𝑆))
5049ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → {𝑏} ⊆ (0..^𝑆))
5125, 29, 48, 50fsumless 15829 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5245, 51eqbrtrrd 5172 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5315, 23, 30, 41, 52ltletrd 11419 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5415, 53ltned 11395 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5554necomd 2994 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5655r19.29an 3156 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5756neneqd 2943 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5857adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5912, 58pm2.65da 817 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
60 dfral2 3097 . . . . . . . . . . . 12 (∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁) ↔ ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
6159, 60sylibr 234 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6243eleq1d 2824 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝑐𝑎) ∈ (1...𝑁) ↔ (𝑐𝑏) ∈ (1...𝑁)))
6362cbvralvw 3235 . . . . . . . . . . 11 (∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁) ↔ ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6461, 63sylibr 234 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁))
6511, 64jca 511 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
66 ffnfv 7139 . . . . . . . . 9 (𝑐:(0..^𝑆)⟶(1...𝑁) ↔ (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
6765, 66sylibr 234 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(1...𝑁))
689, 67jca 511 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
69 fin 6789 . . . . . . 7 (𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
7068, 69sylibr 234 . . . . . 6 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
71 ovex 7464 . . . . . . . 8 (1...𝑁) ∈ V
7271inex2 5324 . . . . . . 7 (𝐴 ∩ (1...𝑁)) ∈ V
7372, 5elmap 8910 . . . . . 6 (𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
7470, 73sylibr 234 . . . . 5 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)))
7574anasss 466 . . . 4 ((𝜑 ∧ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)))
7675rabss3d 4091 . . 3 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁} ⊆ {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
77 reprinfz1.s . . . 4 (𝜑𝑆 ∈ ℕ0)
783, 32, 77reprval 34604 . . 3 (𝜑 → (𝐴(repr‘𝑆)𝑁) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
79 inss1 4245 . . . . . 6 (𝐴 ∩ (1...𝑁)) ⊆ 𝐴
8079a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ 𝐴)
8180, 3sstrd 4006 . . . 4 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ ℕ)
8281, 32, 77reprval 34604 . . 3 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) = {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
8376, 78, 823sstr4d 4043 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑁) ⊆ ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
843, 32, 77, 80reprss 34611 . 2 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) ⊆ (𝐴(repr‘𝑆)𝑁))
8583, 84eqssd 4013 1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cin 3962  wss 3963  {csn 4631   class class class wbr 5148   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   < clt 11293  cle 11294  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  ..^cfzo 13691  Σcsu 15719  reprcrepr 34602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-repr 34603
This theorem is referenced by:  reprfi2  34617  reprfz1  34618  hashrepr  34619
  Copyright terms: Public domain W3C validator