Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinfz1 Structured version   Visualization version   GIF version

Theorem reprinfz1 34606
Description: For the representation of 𝑁, it is sufficient to consider nonnegative integers up to 𝑁. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
reprinfz1.n (𝜑𝑁 ∈ ℕ0)
reprinfz1.s (𝜑𝑆 ∈ ℕ0)
reprinfz1.a (𝜑𝐴 ⊆ ℕ)
Assertion
Ref Expression
reprinfz1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))

Proof of Theorem reprinfz1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12168 . . . . . . . . . . . . 13 ℕ ∈ V
21a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ∈ V)
3 reprinfz1.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 5274 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
5 ovex 7402 . . . . . . . . . . 11 (0..^𝑆) ∈ V
6 elmapg 8789 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
74, 5, 6sylancl 586 . . . . . . . . . 10 (𝜑 → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
87biimpa 476 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
98adantr 480 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶𝐴)
10 elmapfn 8815 . . . . . . . . . . 11 (𝑐 ∈ (𝐴m (0..^𝑆)) → 𝑐 Fn (0..^𝑆))
1110ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 Fn (0..^𝑆))
12 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
13 reprinfz1.n . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ0)
1413nn0red 12480 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
1514ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
163ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝐴 ⊆ ℕ)
17 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐 ∈ (𝐴m (0..^𝑆)))
187ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
1917, 18mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐:(0..^𝑆)⟶𝐴)
20 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑏 ∈ (0..^𝑆))
2119, 20ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ 𝐴)
2216, 21sseldd 3944 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℕ)
2322nnred 12177 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℝ)
24 fzofi 13915 . . . . . . . . . . . . . . . . . . . . 21 (0..^𝑆) ∈ Fin
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (0..^𝑆) ∈ Fin)
263ad4antr 732 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
2719ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2826, 27sseldd 3944 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
2928nnred 12177 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
3025, 29fsumrecl 15676 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
31 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ∈ (1...𝑁))
3213nn0zd 12531 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℤ)
3332ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
34 fznn 13529 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3533, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3622biantrurd 532 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ≤ 𝑁 ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3735, 36bitr4d 282 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ (𝑐𝑏) ≤ 𝑁))
3837notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (¬ (𝑐𝑏) ∈ (1...𝑁) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
3931, 38mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ≤ 𝑁)
4015, 23ltnled 11297 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑁 < (𝑐𝑏) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
4139, 40mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < (𝑐𝑏))
4223recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℂ)
43 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑐𝑎) = (𝑐𝑏))
4443sumsn 15688 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (0..^𝑆) ∧ (𝑐𝑏) ∈ ℂ) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4520, 42, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4628nnnn0d 12479 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ0)
47 nn0ge0 12443 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐𝑎) ∈ ℕ0 → 0 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 0 ≤ (𝑐𝑎))
49 snssi 4768 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (0..^𝑆) → {𝑏} ⊆ (0..^𝑆))
5049ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → {𝑏} ⊆ (0..^𝑆))
5125, 29, 48, 50fsumless 15738 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5245, 51eqbrtrrd 5126 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5315, 23, 30, 41, 52ltletrd 11310 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5415, 53ltned 11286 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5554necomd 2980 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5655r19.29an 3137 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5756neneqd 2930 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5857adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5912, 58pm2.65da 816 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
60 dfral2 3081 . . . . . . . . . . . 12 (∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁) ↔ ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
6159, 60sylibr 234 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6243eleq1d 2813 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝑐𝑎) ∈ (1...𝑁) ↔ (𝑐𝑏) ∈ (1...𝑁)))
6362cbvralvw 3213 . . . . . . . . . . 11 (∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁) ↔ ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6461, 63sylibr 234 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁))
6511, 64jca 511 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
66 ffnfv 7073 . . . . . . . . 9 (𝑐:(0..^𝑆)⟶(1...𝑁) ↔ (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
6765, 66sylibr 234 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(1...𝑁))
689, 67jca 511 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
69 fin 6722 . . . . . . 7 (𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
7068, 69sylibr 234 . . . . . 6 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
71 ovex 7402 . . . . . . . 8 (1...𝑁) ∈ V
7271inex2 5268 . . . . . . 7 (𝐴 ∩ (1...𝑁)) ∈ V
7372, 5elmap 8821 . . . . . 6 (𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
7470, 73sylibr 234 . . . . 5 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)))
7574anasss 466 . . . 4 ((𝜑 ∧ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)))
7675rabss3d 4040 . . 3 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁} ⊆ {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
77 reprinfz1.s . . . 4 (𝜑𝑆 ∈ ℕ0)
783, 32, 77reprval 34594 . . 3 (𝜑 → (𝐴(repr‘𝑆)𝑁) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
79 inss1 4196 . . . . . 6 (𝐴 ∩ (1...𝑁)) ⊆ 𝐴
8079a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ 𝐴)
8180, 3sstrd 3954 . . . 4 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ ℕ)
8281, 32, 77reprval 34594 . . 3 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) = {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
8376, 78, 823sstr4d 3999 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑁) ⊆ ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
843, 32, 77, 80reprss 34601 . 2 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) ⊆ (𝐴(repr‘𝑆)𝑁))
8583, 84eqssd 3961 1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cin 3910  wss 3911  {csn 4585   class class class wbr 5102   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  ..^cfzo 13591  Σcsu 15628  reprcrepr 34592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-repr 34593
This theorem is referenced by:  reprfi2  34607  reprfz1  34608  hashrepr  34609
  Copyright terms: Public domain W3C validator