Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinfz1 Structured version   Visualization version   GIF version

Theorem reprinfz1 31151
Description: For the representation of 𝑁, it is sufficient to consider nonnegative integers up to 𝑁. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
reprinfz1.n (𝜑𝑁 ∈ ℕ0)
reprinfz1.s (𝜑𝑆 ∈ ℕ0)
reprinfz1.a (𝜑𝐴 ⊆ ℕ)
Assertion
Ref Expression
reprinfz1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))

Proof of Theorem reprinfz1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 11281 . . . . . . . . . . . . 13 ℕ ∈ V
21a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ∈ V)
3 reprinfz1.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 4966 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
5 ovex 6874 . . . . . . . . . . 11 (0..^𝑆) ∈ V
6 elmapg 8073 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
74, 5, 6sylancl 580 . . . . . . . . . 10 (𝜑 → (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
87biimpa 468 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
98adantr 472 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶𝐴)
10 elmapfn 8083 . . . . . . . . . . 11 (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) → 𝑐 Fn (0..^𝑆))
1110ad2antlr 718 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 Fn (0..^𝑆))
12 simplr 785 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
13 reprinfz1.n . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ0)
1413nn0red 11599 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
1514ad3antrrr 721 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
163ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝐴 ⊆ ℕ)
17 simpllr 793 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐 ∈ (𝐴𝑚 (0..^𝑆)))
187ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
1917, 18mpbid 223 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐:(0..^𝑆)⟶𝐴)
20 simplr 785 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑏 ∈ (0..^𝑆))
2119, 20ffvelrnd 6550 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ 𝐴)
2216, 21sseldd 3762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℕ)
2322nnred 11291 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℝ)
24 fzofi 12981 . . . . . . . . . . . . . . . . . . . . 21 (0..^𝑆) ∈ Fin
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (0..^𝑆) ∈ Fin)
263ad4antr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
2719ffvelrnda 6549 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2826, 27sseldd 3762 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
2928nnred 11291 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
3025, 29fsumrecl 14750 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
31 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ∈ (1...𝑁))
3213nn0zd 11727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℤ)
3332ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
34 fznn 12615 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3533, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3622biantrurd 528 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ≤ 𝑁 ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3735, 36bitr4d 273 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ (𝑐𝑏) ≤ 𝑁))
3837notbid 309 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (¬ (𝑐𝑏) ∈ (1...𝑁) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
3931, 38mpbid 223 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ≤ 𝑁)
4015, 23ltnled 10438 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑁 < (𝑐𝑏) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
4139, 40mpbird 248 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < (𝑐𝑏))
4223recnd 10322 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℂ)
43 fveq2 6375 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑐𝑎) = (𝑐𝑏))
4443sumsn 14760 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (0..^𝑆) ∧ (𝑐𝑏) ∈ ℂ) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4520, 42, 44syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4628nnnn0d 11598 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ0)
47 nn0ge0 11565 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐𝑎) ∈ ℕ0 → 0 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 0 ≤ (𝑐𝑎))
49 snssi 4493 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (0..^𝑆) → {𝑏} ⊆ (0..^𝑆))
5049ad2antlr 718 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → {𝑏} ⊆ (0..^𝑆))
5125, 29, 48, 50fsumless 14812 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5245, 51eqbrtrrd 4833 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5315, 23, 30, 41, 52ltletrd 10451 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5415, 53ltned 10427 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5554necomd 2992 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5655r19.29an 3224 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5756neneqd 2942 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5857adantlr 706 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5912, 58pm2.65da 851 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
60 dfral2 3140 . . . . . . . . . . . 12 (∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁) ↔ ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
6159, 60sylibr 225 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6243eleq1d 2829 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝑐𝑎) ∈ (1...𝑁) ↔ (𝑐𝑏) ∈ (1...𝑁)))
6362cbvralv 3319 . . . . . . . . . . 11 (∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁) ↔ ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6461, 63sylibr 225 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁))
6511, 64jca 507 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
66 ffnfv 6578 . . . . . . . . 9 (𝑐:(0..^𝑆)⟶(1...𝑁) ↔ (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
6765, 66sylibr 225 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(1...𝑁))
689, 67jca 507 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
69 fin 6267 . . . . . . 7 (𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
7068, 69sylibr 225 . . . . . 6 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
71 ovex 6874 . . . . . . . 8 (1...𝑁) ∈ V
7271inex2 4961 . . . . . . 7 (𝐴 ∩ (1...𝑁)) ∈ V
7372, 5elmap 8089 . . . . . 6 (𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
7470, 73sylibr 225 . . . . 5 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑𝑚 (0..^𝑆)))
7574anasss 458 . . . 4 ((𝜑 ∧ (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑𝑚 (0..^𝑆)))
7675rabss3d 29800 . . 3 (𝜑 → {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁} ⊆ {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
77 reprinfz1.s . . . 4 (𝜑𝑆 ∈ ℕ0)
783, 32, 77reprval 31139 . . 3 (𝜑 → (𝐴(repr‘𝑆)𝑁) = {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
79 inss1 3992 . . . . . 6 (𝐴 ∩ (1...𝑁)) ⊆ 𝐴
8079a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ 𝐴)
8180, 3sstrd 3771 . . . 4 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ ℕ)
8281, 32, 77reprval 31139 . . 3 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) = {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
8376, 78, 823sstr4d 3808 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑁) ⊆ ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
843, 32, 77, 80reprss 31146 . 2 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) ⊆ (𝐴(repr‘𝑆)𝑁))
8583, 84eqssd 3778 1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cin 3731  wss 3732  {csn 4334   class class class wbr 4809   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  Fincfn 8160  cc 10187  cr 10188  0cc0 10189  1c1 10190   < clt 10328  cle 10329  cn 11274  0cn0 11538  cz 11624  ...cfz 12533  ..^cfzo 12673  Σcsu 14701  reprcrepr 31137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-repr 31138
This theorem is referenced by:  reprfi2  31152  reprfz1  31153  hashrepr  31154
  Copyright terms: Public domain W3C validator