Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinfz1 Structured version   Visualization version   GIF version

Theorem reprinfz1 34654
Description: For the representation of 𝑁, it is sufficient to consider nonnegative integers up to 𝑁. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
reprinfz1.n (𝜑𝑁 ∈ ℕ0)
reprinfz1.s (𝜑𝑆 ∈ ℕ0)
reprinfz1.a (𝜑𝐴 ⊆ ℕ)
Assertion
Ref Expression
reprinfz1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))

Proof of Theorem reprinfz1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12246 . . . . . . . . . . . . 13 ℕ ∈ V
21a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ∈ V)
3 reprinfz1.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 5294 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
5 ovex 7438 . . . . . . . . . . 11 (0..^𝑆) ∈ V
6 elmapg 8853 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
74, 5, 6sylancl 586 . . . . . . . . . 10 (𝜑 → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
87biimpa 476 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
98adantr 480 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶𝐴)
10 elmapfn 8879 . . . . . . . . . . 11 (𝑐 ∈ (𝐴m (0..^𝑆)) → 𝑐 Fn (0..^𝑆))
1110ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 Fn (0..^𝑆))
12 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
13 reprinfz1.n . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ0)
1413nn0red 12563 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
1514ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
163ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝐴 ⊆ ℕ)
17 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐 ∈ (𝐴m (0..^𝑆)))
187ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
1917, 18mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐:(0..^𝑆)⟶𝐴)
20 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑏 ∈ (0..^𝑆))
2119, 20ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ 𝐴)
2216, 21sseldd 3959 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℕ)
2322nnred 12255 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℝ)
24 fzofi 13992 . . . . . . . . . . . . . . . . . . . . 21 (0..^𝑆) ∈ Fin
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (0..^𝑆) ∈ Fin)
263ad4antr 732 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
2719ffvelcdmda 7074 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2826, 27sseldd 3959 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
2928nnred 12255 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
3025, 29fsumrecl 15750 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
31 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ∈ (1...𝑁))
3213nn0zd 12614 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℤ)
3332ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
34 fznn 13609 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3533, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3622biantrurd 532 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ≤ 𝑁 ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3735, 36bitr4d 282 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ (𝑐𝑏) ≤ 𝑁))
3837notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (¬ (𝑐𝑏) ∈ (1...𝑁) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
3931, 38mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ≤ 𝑁)
4015, 23ltnled 11382 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑁 < (𝑐𝑏) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
4139, 40mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < (𝑐𝑏))
4223recnd 11263 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℂ)
43 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑐𝑎) = (𝑐𝑏))
4443sumsn 15762 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (0..^𝑆) ∧ (𝑐𝑏) ∈ ℂ) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4520, 42, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4628nnnn0d 12562 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ0)
47 nn0ge0 12526 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐𝑎) ∈ ℕ0 → 0 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 0 ≤ (𝑐𝑎))
49 snssi 4784 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (0..^𝑆) → {𝑏} ⊆ (0..^𝑆))
5049ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → {𝑏} ⊆ (0..^𝑆))
5125, 29, 48, 50fsumless 15812 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5245, 51eqbrtrrd 5143 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5315, 23, 30, 41, 52ltletrd 11395 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5415, 53ltned 11371 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5554necomd 2987 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5655r19.29an 3144 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5756neneqd 2937 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5857adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5912, 58pm2.65da 816 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
60 dfral2 3088 . . . . . . . . . . . 12 (∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁) ↔ ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
6159, 60sylibr 234 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6243eleq1d 2819 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝑐𝑎) ∈ (1...𝑁) ↔ (𝑐𝑏) ∈ (1...𝑁)))
6362cbvralvw 3220 . . . . . . . . . . 11 (∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁) ↔ ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6461, 63sylibr 234 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁))
6511, 64jca 511 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
66 ffnfv 7109 . . . . . . . . 9 (𝑐:(0..^𝑆)⟶(1...𝑁) ↔ (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
6765, 66sylibr 234 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(1...𝑁))
689, 67jca 511 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
69 fin 6758 . . . . . . 7 (𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
7068, 69sylibr 234 . . . . . 6 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
71 ovex 7438 . . . . . . . 8 (1...𝑁) ∈ V
7271inex2 5288 . . . . . . 7 (𝐴 ∩ (1...𝑁)) ∈ V
7372, 5elmap 8885 . . . . . 6 (𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
7470, 73sylibr 234 . . . . 5 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)))
7574anasss 466 . . . 4 ((𝜑 ∧ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)))
7675rabss3d 4056 . . 3 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁} ⊆ {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
77 reprinfz1.s . . . 4 (𝜑𝑆 ∈ ℕ0)
783, 32, 77reprval 34642 . . 3 (𝜑 → (𝐴(repr‘𝑆)𝑁) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
79 inss1 4212 . . . . . 6 (𝐴 ∩ (1...𝑁)) ⊆ 𝐴
8079a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ 𝐴)
8180, 3sstrd 3969 . . . 4 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ ℕ)
8281, 32, 77reprval 34642 . . 3 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) = {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
8376, 78, 823sstr4d 4014 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑁) ⊆ ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
843, 32, 77, 80reprss 34649 . 2 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) ⊆ (𝐴(repr‘𝑆)𝑁))
8583, 84eqssd 3976 1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cin 3925  wss 3926  {csn 4601   class class class wbr 5119   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   < clt 11269  cle 11270  cn 12240  0cn0 12501  cz 12588  ...cfz 13524  ..^cfzo 13671  Σcsu 15702  reprcrepr 34640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-repr 34641
This theorem is referenced by:  reprfi2  34655  reprfz1  34656  hashrepr  34657
  Copyright terms: Public domain W3C validator