Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprinfz1 Structured version   Visualization version   GIF version

Theorem reprinfz1 32602
Description: For the representation of 𝑁, it is sufficient to consider nonnegative integers up to 𝑁. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypotheses
Ref Expression
reprinfz1.n (𝜑𝑁 ∈ ℕ0)
reprinfz1.s (𝜑𝑆 ∈ ℕ0)
reprinfz1.a (𝜑𝐴 ⊆ ℕ)
Assertion
Ref Expression
reprinfz1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))

Proof of Theorem reprinfz1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 11979 . . . . . . . . . . . . 13 ℕ ∈ V
21a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ∈ V)
3 reprinfz1.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 5248 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
5 ovex 7308 . . . . . . . . . . 11 (0..^𝑆) ∈ V
6 elmapg 8628 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
74, 5, 6sylancl 586 . . . . . . . . . 10 (𝜑 → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
87biimpa 477 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
98adantr 481 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶𝐴)
10 elmapfn 8653 . . . . . . . . . . 11 (𝑐 ∈ (𝐴m (0..^𝑆)) → 𝑐 Fn (0..^𝑆))
1110ad2antlr 724 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 Fn (0..^𝑆))
12 simplr 766 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
13 reprinfz1.n . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ0)
1413nn0red 12294 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℝ)
1514ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℝ)
163ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝐴 ⊆ ℕ)
17 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐 ∈ (𝐴m (0..^𝑆)))
187ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
1917, 18mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑐:(0..^𝑆)⟶𝐴)
20 simplr 766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑏 ∈ (0..^𝑆))
2119, 20ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ 𝐴)
2216, 21sseldd 3922 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℕ)
2322nnred 11988 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℝ)
24 fzofi 13694 . . . . . . . . . . . . . . . . . . . . 21 (0..^𝑆) ∈ Fin
2524a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (0..^𝑆) ∈ Fin)
263ad4antr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
2719ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2826, 27sseldd 3922 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
2928nnred 11988 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
3025, 29fsumrecl 15446 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
31 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ∈ (1...𝑁))
3213nn0zd 12424 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℤ)
3332ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
34 fznn 13324 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℤ → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3533, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3622biantrurd 533 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ≤ 𝑁 ↔ ((𝑐𝑏) ∈ ℕ ∧ (𝑐𝑏) ≤ 𝑁)))
3735, 36bitr4d 281 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ((𝑐𝑏) ∈ (1...𝑁) ↔ (𝑐𝑏) ≤ 𝑁))
3837notbid 318 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (¬ (𝑐𝑏) ∈ (1...𝑁) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
3931, 38mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ (𝑐𝑏) ≤ 𝑁)
4015, 23ltnled 11122 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑁 < (𝑐𝑏) ↔ ¬ (𝑐𝑏) ≤ 𝑁))
4139, 40mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < (𝑐𝑏))
4223recnd 11003 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ∈ ℂ)
43 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑐𝑎) = (𝑐𝑏))
4443sumsn 15458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ (0..^𝑆) ∧ (𝑐𝑏) ∈ ℂ) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4520, 42, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) = (𝑐𝑏))
4628nnnn0d 12293 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ0)
47 nn0ge0 12258 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐𝑎) ∈ ℕ0 → 0 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) ∧ 𝑎 ∈ (0..^𝑆)) → 0 ≤ (𝑐𝑎))
49 snssi 4741 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (0..^𝑆) → {𝑏} ⊆ (0..^𝑆))
5049ad2antlr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → {𝑏} ⊆ (0..^𝑆))
5125, 29, 48, 50fsumless 15508 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ {𝑏} (𝑐𝑎) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5245, 51eqbrtrrd 5098 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → (𝑐𝑏) ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5315, 23, 30, 41, 52ltletrd 11135 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5415, 53ltned 11111 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → 𝑁 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5554necomd 2999 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑏 ∈ (0..^𝑆)) ∧ ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5655r19.29an 3217 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑁)
5756neneqd 2948 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5857adantlr 712 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) ∧ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁)) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)
5912, 58pm2.65da 814 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
60 dfral2 3168 . . . . . . . . . . . 12 (∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁) ↔ ¬ ∃𝑏 ∈ (0..^𝑆) ¬ (𝑐𝑏) ∈ (1...𝑁))
6159, 60sylibr 233 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6243eleq1d 2823 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝑐𝑎) ∈ (1...𝑁) ↔ (𝑐𝑏) ∈ (1...𝑁)))
6362cbvralvw 3383 . . . . . . . . . . 11 (∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁) ↔ ∀𝑏 ∈ (0..^𝑆)(𝑐𝑏) ∈ (1...𝑁))
6461, 63sylibr 233 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁))
6511, 64jca 512 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
66 ffnfv 6992 . . . . . . . . 9 (𝑐:(0..^𝑆)⟶(1...𝑁) ↔ (𝑐 Fn (0..^𝑆) ∧ ∀𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ (1...𝑁)))
6765, 66sylibr 233 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(1...𝑁))
689, 67jca 512 . . . . . . 7 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
69 fin 6654 . . . . . . 7 (𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)) ↔ (𝑐:(0..^𝑆)⟶𝐴𝑐:(0..^𝑆)⟶(1...𝑁)))
7068, 69sylibr 233 . . . . . 6 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
71 ovex 7308 . . . . . . . 8 (1...𝑁) ∈ V
7271inex2 5242 . . . . . . 7 (𝐴 ∩ (1...𝑁)) ∈ V
7372, 5elmap 8659 . . . . . 6 (𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶(𝐴 ∩ (1...𝑁)))
7470, 73sylibr 233 . . . . 5 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)))
7574anasss 467 . . . 4 ((𝜑 ∧ (𝑐 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁)) → 𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)))
7675rabss3d 30861 . . 3 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁} ⊆ {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
77 reprinfz1.s . . . 4 (𝜑𝑆 ∈ ℕ0)
783, 32, 77reprval 32590 . . 3 (𝜑 → (𝐴(repr‘𝑆)𝑁) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
79 inss1 4162 . . . . . 6 (𝐴 ∩ (1...𝑁)) ⊆ 𝐴
8079a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ 𝐴)
8180, 3sstrd 3931 . . . 4 (𝜑 → (𝐴 ∩ (1...𝑁)) ⊆ ℕ)
8281, 32, 77reprval 32590 . . 3 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) = {𝑐 ∈ ((𝐴 ∩ (1...𝑁)) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑁})
8376, 78, 823sstr4d 3968 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑁) ⊆ ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
843, 32, 77, 80reprss 32597 . 2 (𝜑 → ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁) ⊆ (𝐴(repr‘𝑆)𝑁))
8583, 84eqssd 3938 1 (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887  {csn 4561   class class class wbr 5074   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   < clt 11009  cle 11010  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  ..^cfzo 13382  Σcsu 15397  reprcrepr 32588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-repr 32589
This theorem is referenced by:  reprfi2  32603  reprfz1  32604  hashrepr  32605
  Copyright terms: Public domain W3C validator