| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version | ||
| Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| f0 | ⊢ ∅:∅⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ ∅ = ∅ | |
| 2 | fn0 6617 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | . 2 ⊢ ∅ Fn ∅ |
| 4 | rn0 5870 | . . 3 ⊢ ran ∅ = ∅ | |
| 5 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 3977 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
| 7 | df-f 6490 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
| 8 | 3, 6, 7 | mpbir2an 711 | 1 ⊢ ∅:∅⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3898 ∅c0 4282 ran crn 5620 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: f00 6710 f0bi 6711 f10 6801 map0g 8814 ac6sfi 9175 oif 9423 wrd0 14448 0csh0 14702 ram0 16936 0ssc 17746 0subcat 17747 setc2ohom 18004 cat1lem 18005 gsum0 18594 ga0 19212 0frgp 19693 ptcmpfi 23729 0met 24282 perfdvf 25832 uhgr0e 29051 uhgr0 29053 griedg0prc 29244 locfinref 33875 matunitlindf 37678 poimirlem28 37708 sticksstones11 42269 climlimsupcex 45891 0cnf 45999 dvnprodlem3 46070 sge00 46498 hoidmvlelem3 46719 |
| Copyright terms: Public domain | W3C validator |