Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version |
Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
f0 | ⊢ ∅:∅⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∅ = ∅ | |
2 | fn0 6562 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 230 | . 2 ⊢ ∅ Fn ∅ |
4 | rn0 5834 | . . 3 ⊢ ran ∅ = ∅ | |
5 | 0ss 4336 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 3960 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
7 | df-f 6436 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
8 | 3, 6, 7 | mpbir2an 708 | 1 ⊢ ∅:∅⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊆ wss 3892 ∅c0 4262 ran crn 5591 Fn wfn 6427 ⟶wf 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-fun 6434 df-fn 6435 df-f 6436 |
This theorem is referenced by: f00 6654 f0bi 6655 f10 6746 map0g 8655 ac6sfi 9036 oif 9267 wrd0 14240 0csh0 14504 ram0 16721 0ssc 17550 0subcat 17551 setc2ohom 17808 cat1lem 17809 gsum0 18366 ga0 18902 0frgp 19383 ptcmpfi 22962 0met 23517 perfdvf 25065 uhgr0e 27439 uhgr0 27441 griedg0prc 27629 locfinref 31787 matunitlindf 35771 poimirlem28 35801 sticksstones11 40109 climlimsupcex 43281 0cnf 43389 dvnprodlem3 43460 sge00 43885 hoidmvlelem3 44106 |
Copyright terms: Public domain | W3C validator |