Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version |
Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
f0 | ⊢ ∅:∅⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∅ = ∅ | |
2 | fn0 6564 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 230 | . 2 ⊢ ∅ Fn ∅ |
4 | rn0 5835 | . . 3 ⊢ ran ∅ = ∅ | |
5 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 3955 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
7 | df-f 6437 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
8 | 3, 6, 7 | mpbir2an 708 | 1 ⊢ ∅:∅⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3887 ∅c0 4256 ran crn 5590 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: f00 6656 f0bi 6657 f10 6749 map0g 8672 ac6sfi 9058 oif 9289 wrd0 14242 0csh0 14506 ram0 16723 0ssc 17552 0subcat 17553 setc2ohom 17810 cat1lem 17811 gsum0 18368 ga0 18904 0frgp 19385 ptcmpfi 22964 0met 23519 perfdvf 25067 uhgr0e 27441 uhgr0 27443 griedg0prc 27631 locfinref 31791 matunitlindf 35775 poimirlem28 35805 sticksstones11 40112 climlimsupcex 43310 0cnf 43418 dvnprodlem3 43489 sge00 43914 hoidmvlelem3 44135 |
Copyright terms: Public domain | W3C validator |