![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version |
Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
f0 | ⊢ ∅:∅⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 ⊢ ∅ = ∅ | |
2 | fn0 6672 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 230 | . 2 ⊢ ∅ Fn ∅ |
4 | rn0 5916 | . . 3 ⊢ ran ∅ = ∅ | |
5 | 0ss 4389 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 4009 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
7 | df-f 6538 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
8 | 3, 6, 7 | mpbir2an 708 | 1 ⊢ ∅:∅⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ⊆ wss 3941 ∅c0 4315 ran crn 5668 Fn wfn 6529 ⟶wf 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-fun 6536 df-fn 6537 df-f 6538 |
This theorem is referenced by: f00 6764 f0bi 6765 f10 6857 map0g 8875 ac6sfi 9284 oif 9522 wrd0 14487 0csh0 14741 ram0 16956 0ssc 17788 0subcat 17789 setc2ohom 18049 cat1lem 18050 gsum0 18609 ga0 19206 0frgp 19691 ptcmpfi 23641 0met 24196 perfdvf 25756 uhgr0e 28803 uhgr0 28805 griedg0prc 28993 locfinref 33313 matunitlindf 36980 poimirlem28 37010 sticksstones11 41469 climlimsupcex 44995 0cnf 45103 dvnprodlem3 45174 sge00 45602 hoidmvlelem3 45823 |
Copyright terms: Public domain | W3C validator |