![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version |
Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
f0 | ⊢ ∅:∅⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∅ = ∅ | |
2 | fn0 6711 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 231 | . 2 ⊢ ∅ Fn ∅ |
4 | rn0 5950 | . . 3 ⊢ ran ∅ = ∅ | |
5 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 4043 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
7 | df-f 6577 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
8 | 3, 6, 7 | mpbir2an 710 | 1 ⊢ ∅:∅⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 ∅c0 4352 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: f00 6803 f0bi 6804 f10 6895 map0g 8942 ac6sfi 9348 oif 9599 wrd0 14587 0csh0 14841 ram0 17069 0ssc 17901 0subcat 17902 setc2ohom 18162 cat1lem 18163 gsum0 18722 ga0 19338 0frgp 19821 ptcmpfi 23842 0met 24397 perfdvf 25958 uhgr0e 29106 uhgr0 29108 griedg0prc 29299 locfinref 33787 matunitlindf 37578 poimirlem28 37608 sticksstones11 42113 climlimsupcex 45690 0cnf 45798 dvnprodlem3 45869 sge00 46297 hoidmvlelem3 46518 |
Copyright terms: Public domain | W3C validator |