MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0 Structured version   Visualization version   GIF version

Theorem f0 6763
Description: The empty function. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
f0 ∅:∅⟶𝐴

Proof of Theorem f0
StepHypRef Expression
1 eqid 2724 . . 3 ∅ = ∅
2 fn0 6672 . . 3 (∅ Fn ∅ ↔ ∅ = ∅)
31, 2mpbir 230 . 2 ∅ Fn ∅
4 rn0 5916 . . 3 ran ∅ = ∅
5 0ss 4389 . . 3 ∅ ⊆ 𝐴
64, 5eqsstri 4009 . 2 ran ∅ ⊆ 𝐴
7 df-f 6538 . 2 (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴))
83, 6, 7mpbir2an 708 1 ∅:∅⟶𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wss 3941  c0 4315  ran crn 5668   Fn wfn 6529  wf 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-fun 6536  df-fn 6537  df-f 6538
This theorem is referenced by:  f00  6764  f0bi  6765  f10  6857  map0g  8875  ac6sfi  9284  oif  9522  wrd0  14487  0csh0  14741  ram0  16956  0ssc  17788  0subcat  17789  setc2ohom  18049  cat1lem  18050  gsum0  18609  ga0  19206  0frgp  19691  ptcmpfi  23641  0met  24196  perfdvf  25756  uhgr0e  28803  uhgr0  28805  griedg0prc  28993  locfinref  33313  matunitlindf  36980  poimirlem28  37010  sticksstones11  41469  climlimsupcex  44995  0cnf  45103  dvnprodlem3  45174  sge00  45602  hoidmvlelem3  45823
  Copyright terms: Public domain W3C validator