MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0 Structured version   Visualization version   GIF version

Theorem f0 6759
Description: The empty function. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
f0 ∅:∅⟶𝐴

Proof of Theorem f0
StepHypRef Expression
1 eqid 2735 . . 3 ∅ = ∅
2 fn0 6669 . . 3 (∅ Fn ∅ ↔ ∅ = ∅)
31, 2mpbir 231 . 2 ∅ Fn ∅
4 rn0 5905 . . 3 ran ∅ = ∅
5 0ss 4375 . . 3 ∅ ⊆ 𝐴
64, 5eqsstri 4005 . 2 ran ∅ ⊆ 𝐴
7 df-f 6535 . 2 (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴))
83, 6, 7mpbir2an 711 1 ∅:∅⟶𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3926  c0 4308  ran crn 5655   Fn wfn 6526  wf 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535
This theorem is referenced by:  f00  6760  f0bi  6761  f10  6851  map0g  8898  ac6sfi  9292  oif  9544  wrd0  14557  0csh0  14811  ram0  17042  0ssc  17850  0subcat  17851  setc2ohom  18108  cat1lem  18109  gsum0  18662  ga0  19281  0frgp  19760  ptcmpfi  23751  0met  24305  perfdvf  25856  uhgr0e  29050  uhgr0  29052  griedg0prc  29243  locfinref  33872  matunitlindf  37642  poimirlem28  37672  sticksstones11  42169  climlimsupcex  45798  0cnf  45906  dvnprodlem3  45977  sge00  46405  hoidmvlelem3  46626
  Copyright terms: Public domain W3C validator