| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version | ||
| Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| f0 | ⊢ ∅:∅⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ∅ = ∅ | |
| 2 | fn0 6612 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | . 2 ⊢ ∅ Fn ∅ |
| 4 | rn0 5866 | . . 3 ⊢ ran ∅ = ∅ | |
| 5 | 0ss 4350 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 3981 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
| 7 | df-f 6485 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
| 8 | 3, 6, 7 | mpbir2an 711 | 1 ⊢ ∅:∅⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3902 ∅c0 4283 ran crn 5617 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: f00 6705 f0bi 6706 f10 6796 map0g 8808 ac6sfi 9168 oif 9416 wrd0 14443 0csh0 14697 ram0 16931 0ssc 17741 0subcat 17742 setc2ohom 17999 cat1lem 18000 gsum0 18589 ga0 19208 0frgp 19689 ptcmpfi 23726 0met 24279 perfdvf 25829 uhgr0e 29047 uhgr0 29049 griedg0prc 29240 locfinref 33849 matunitlindf 37657 poimirlem28 37687 sticksstones11 42188 climlimsupcex 45806 0cnf 45914 dvnprodlem3 45985 sge00 46413 hoidmvlelem3 46634 |
| Copyright terms: Public domain | W3C validator |