| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version | ||
| Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| f0 | ⊢ ∅:∅⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∅ = ∅ | |
| 2 | fn0 6617 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | . 2 ⊢ ∅ Fn ∅ |
| 4 | rn0 5872 | . . 3 ⊢ ran ∅ = ∅ | |
| 5 | 0ss 4353 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 3984 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
| 7 | df-f 6490 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
| 8 | 3, 6, 7 | mpbir2an 711 | 1 ⊢ ∅:∅⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3905 ∅c0 4286 ran crn 5624 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: f00 6710 f0bi 6711 f10 6801 map0g 8818 ac6sfi 9189 oif 9441 wrd0 14464 0csh0 14717 ram0 16952 0ssc 17762 0subcat 17763 setc2ohom 18020 cat1lem 18021 gsum0 18576 ga0 19195 0frgp 19676 ptcmpfi 23716 0met 24270 perfdvf 25820 uhgr0e 29034 uhgr0 29036 griedg0prc 29227 locfinref 33807 matunitlindf 37597 poimirlem28 37627 sticksstones11 42129 climlimsupcex 45751 0cnf 45859 dvnprodlem3 45930 sge00 46358 hoidmvlelem3 46579 |
| Copyright terms: Public domain | W3C validator |