| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version | ||
| Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| f0 | ⊢ ∅:∅⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ∅ = ∅ | |
| 2 | fn0 6652 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | . 2 ⊢ ∅ Fn ∅ |
| 4 | rn0 5892 | . . 3 ⊢ ran ∅ = ∅ | |
| 5 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 3996 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
| 7 | df-f 6518 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
| 8 | 3, 6, 7 | mpbir2an 711 | 1 ⊢ ∅:∅⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 ∅c0 4299 ran crn 5642 Fn wfn 6509 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: f00 6745 f0bi 6746 f10 6836 map0g 8860 ac6sfi 9238 oif 9490 wrd0 14511 0csh0 14765 ram0 17000 0ssc 17806 0subcat 17807 setc2ohom 18064 cat1lem 18065 gsum0 18618 ga0 19237 0frgp 19716 ptcmpfi 23707 0met 24261 perfdvf 25811 uhgr0e 29005 uhgr0 29007 griedg0prc 29198 locfinref 33838 matunitlindf 37619 poimirlem28 37649 sticksstones11 42151 climlimsupcex 45774 0cnf 45882 dvnprodlem3 45953 sge00 46381 hoidmvlelem3 46602 |
| Copyright terms: Public domain | W3C validator |