| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version | ||
| Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| f0 | ⊢ ∅:∅⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∅ = ∅ | |
| 2 | fn0 6649 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
| 3 | 1, 2 | mpbir 231 | . 2 ⊢ ∅ Fn ∅ |
| 4 | rn0 5889 | . . 3 ⊢ ran ∅ = ∅ | |
| 5 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 6 | 4, 5 | eqsstri 3993 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
| 7 | df-f 6515 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
| 8 | 3, 6, 7 | mpbir2an 711 | 1 ⊢ ∅:∅⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 ∅c0 4296 ran crn 5639 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: f00 6742 f0bi 6743 f10 6833 map0g 8857 ac6sfi 9231 oif 9483 wrd0 14504 0csh0 14758 ram0 16993 0ssc 17799 0subcat 17800 setc2ohom 18057 cat1lem 18058 gsum0 18611 ga0 19230 0frgp 19709 ptcmpfi 23700 0met 24254 perfdvf 25804 uhgr0e 28998 uhgr0 29000 griedg0prc 29191 locfinref 33831 matunitlindf 37612 poimirlem28 37642 sticksstones11 42144 climlimsupcex 45767 0cnf 45875 dvnprodlem3 45946 sge00 46374 hoidmvlelem3 46595 |
| Copyright terms: Public domain | W3C validator |