MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0 Structured version   Visualization version   GIF version

Theorem f0 6709
Description: The empty function. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
f0 ∅:∅⟶𝐴

Proof of Theorem f0
StepHypRef Expression
1 eqid 2733 . . 3 ∅ = ∅
2 fn0 6617 . . 3 (∅ Fn ∅ ↔ ∅ = ∅)
31, 2mpbir 231 . 2 ∅ Fn ∅
4 rn0 5870 . . 3 ran ∅ = ∅
5 0ss 4349 . . 3 ∅ ⊆ 𝐴
64, 5eqsstri 3977 . 2 ran ∅ ⊆ 𝐴
7 df-f 6490 . 2 (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴))
83, 6, 7mpbir2an 711 1 ∅:∅⟶𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3898  c0 4282  ran crn 5620   Fn wfn 6481  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  f00  6710  f0bi  6711  f10  6801  map0g  8814  ac6sfi  9175  oif  9423  wrd0  14448  0csh0  14702  ram0  16936  0ssc  17746  0subcat  17747  setc2ohom  18004  cat1lem  18005  gsum0  18594  ga0  19212  0frgp  19693  ptcmpfi  23729  0met  24282  perfdvf  25832  uhgr0e  29051  uhgr0  29053  griedg0prc  29244  locfinref  33875  matunitlindf  37678  poimirlem28  37708  sticksstones11  42269  climlimsupcex  45891  0cnf  45999  dvnprodlem3  46070  sge00  46498  hoidmvlelem3  46719
  Copyright terms: Public domain W3C validator