Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f0 | Structured version Visualization version GIF version |
Description: The empty function. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
f0 | ⊢ ∅:∅⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∅ = ∅ | |
2 | fn0 6548 | . . 3 ⊢ (∅ Fn ∅ ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 230 | . 2 ⊢ ∅ Fn ∅ |
4 | rn0 5824 | . . 3 ⊢ ran ∅ = ∅ | |
5 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 3951 | . 2 ⊢ ran ∅ ⊆ 𝐴 |
7 | df-f 6422 | . 2 ⊢ (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴)) | |
8 | 3, 6, 7 | mpbir2an 707 | 1 ⊢ ∅:∅⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3883 ∅c0 4253 ran crn 5581 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: f00 6640 f0bi 6641 f10 6732 map0g 8630 ac6sfi 8988 oif 9219 wrd0 14170 0csh0 14434 ram0 16651 0ssc 17468 0subcat 17469 setc2ohom 17726 cat1lem 17727 gsum0 18283 ga0 18819 0frgp 19300 ptcmpfi 22872 0met 23427 perfdvf 24972 uhgr0e 27344 uhgr0 27346 griedg0prc 27534 locfinref 31693 matunitlindf 35702 poimirlem28 35732 sticksstones11 40040 climlimsupcex 43200 0cnf 43308 dvnprodlem3 43379 sge00 43804 hoidmvlelem3 44025 |
Copyright terms: Public domain | W3C validator |