MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f0 Structured version   Visualization version   GIF version

Theorem f0 6704
Description: The empty function. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
f0 ∅:∅⟶𝐴

Proof of Theorem f0
StepHypRef Expression
1 eqid 2731 . . 3 ∅ = ∅
2 fn0 6612 . . 3 (∅ Fn ∅ ↔ ∅ = ∅)
31, 2mpbir 231 . 2 ∅ Fn ∅
4 rn0 5866 . . 3 ran ∅ = ∅
5 0ss 4350 . . 3 ∅ ⊆ 𝐴
64, 5eqsstri 3981 . 2 ran ∅ ⊆ 𝐴
7 df-f 6485 . 2 (∅:∅⟶𝐴 ↔ (∅ Fn ∅ ∧ ran ∅ ⊆ 𝐴))
83, 6, 7mpbir2an 711 1 ∅:∅⟶𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3902  c0 4283  ran crn 5617   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  f00  6705  f0bi  6706  f10  6796  map0g  8808  ac6sfi  9168  oif  9416  wrd0  14443  0csh0  14697  ram0  16931  0ssc  17741  0subcat  17742  setc2ohom  17999  cat1lem  18000  gsum0  18589  ga0  19208  0frgp  19689  ptcmpfi  23726  0met  24279  perfdvf  25829  uhgr0e  29047  uhgr0  29049  griedg0prc  29240  locfinref  33849  matunitlindf  37657  poimirlem28  37687  sticksstones11  42188  climlimsupcex  45806  0cnf  45914  dvnprodlem3  45985  sge00  46413  hoidmvlelem3  46634
  Copyright terms: Public domain W3C validator