Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maprnin Structured version   Visualization version   GIF version

Theorem maprnin 32627
Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.)
Hypotheses
Ref Expression
maprnin.1 𝐴 ∈ V
maprnin.2 𝐵 ∈ V
Assertion
Ref Expression
maprnin ((𝐵𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶}
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓

Proof of Theorem maprnin
StepHypRef Expression
1 ffn 6670 . . . . . 6 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2 df-f 6503 . . . . . . 7 (𝑓:𝐴𝐶 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐶))
32baibr 536 . . . . . 6 (𝑓 Fn 𝐴 → (ran 𝑓𝐶𝑓:𝐴𝐶))
41, 3syl 17 . . . . 5 (𝑓:𝐴𝐵 → (ran 𝑓𝐶𝑓:𝐴𝐶))
54pm5.32i 574 . . . 4 ((𝑓:𝐴𝐵 ∧ ran 𝑓𝐶) ↔ (𝑓:𝐴𝐵𝑓:𝐴𝐶))
6 maprnin.2 . . . . . 6 𝐵 ∈ V
7 maprnin.1 . . . . . 6 𝐴 ∈ V
86, 7elmap 8821 . . . . 5 (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵)
98anbi1i 624 . . . 4 ((𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶) ↔ (𝑓:𝐴𝐵 ∧ ran 𝑓𝐶))
10 fin 6722 . . . 4 (𝑓:𝐴⟶(𝐵𝐶) ↔ (𝑓:𝐴𝐵𝑓:𝐴𝐶))
115, 9, 103bitr4ri 304 . . 3 (𝑓:𝐴⟶(𝐵𝐶) ↔ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶))
1211abbii 2796 . 2 {𝑓𝑓:𝐴⟶(𝐵𝐶)} = {𝑓 ∣ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶)}
136inex1 5267 . . 3 (𝐵𝐶) ∈ V
1413, 7mapval 8788 . 2 ((𝐵𝐶) ↑m 𝐴) = {𝑓𝑓:𝐴⟶(𝐵𝐶)}
15 df-rab 3403 . 2 {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶} = {𝑓 ∣ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶)}
1612, 14, 153eqtr4i 2762 1 ((𝐵𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  {crab 3402  Vcvv 3444  cin 3910  wss 3911  ran crn 5632   Fn wfn 6494  wf 6495  (class class class)co 7369  m cmap 8776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778
This theorem is referenced by:  fpwrelmapffs  32630
  Copyright terms: Public domain W3C validator