Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maprnin Structured version   Visualization version   GIF version

Theorem maprnin 32745
Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.)
Hypotheses
Ref Expression
maprnin.1 𝐴 ∈ V
maprnin.2 𝐵 ∈ V
Assertion
Ref Expression
maprnin ((𝐵𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶}
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓

Proof of Theorem maprnin
StepHypRef Expression
1 ffn 6747 . . . . . 6 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2 df-f 6577 . . . . . . 7 (𝑓:𝐴𝐶 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐶))
32baibr 536 . . . . . 6 (𝑓 Fn 𝐴 → (ran 𝑓𝐶𝑓:𝐴𝐶))
41, 3syl 17 . . . . 5 (𝑓:𝐴𝐵 → (ran 𝑓𝐶𝑓:𝐴𝐶))
54pm5.32i 574 . . . 4 ((𝑓:𝐴𝐵 ∧ ran 𝑓𝐶) ↔ (𝑓:𝐴𝐵𝑓:𝐴𝐶))
6 maprnin.2 . . . . . 6 𝐵 ∈ V
7 maprnin.1 . . . . . 6 𝐴 ∈ V
86, 7elmap 8929 . . . . 5 (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵)
98anbi1i 623 . . . 4 ((𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶) ↔ (𝑓:𝐴𝐵 ∧ ran 𝑓𝐶))
10 fin 6801 . . . 4 (𝑓:𝐴⟶(𝐵𝐶) ↔ (𝑓:𝐴𝐵𝑓:𝐴𝐶))
115, 9, 103bitr4ri 304 . . 3 (𝑓:𝐴⟶(𝐵𝐶) ↔ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶))
1211abbii 2812 . 2 {𝑓𝑓:𝐴⟶(𝐵𝐶)} = {𝑓 ∣ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶)}
136inex1 5335 . . 3 (𝐵𝐶) ∈ V
1413, 7mapval 8896 . 2 ((𝐵𝐶) ↑m 𝐴) = {𝑓𝑓:𝐴⟶(𝐵𝐶)}
15 df-rab 3444 . 2 {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶} = {𝑓 ∣ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶)}
1612, 14, 153eqtr4i 2778 1 ((𝐵𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  Vcvv 3488  cin 3975  wss 3976  ran crn 5701   Fn wfn 6568  wf 6569  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886
This theorem is referenced by:  fpwrelmapffs  32748
  Copyright terms: Public domain W3C validator