![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maprnin | Structured version Visualization version GIF version |
Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
Ref | Expression |
---|---|
maprnin.1 | ⊢ 𝐴 ∈ V |
maprnin.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
maprnin | ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓 Fn 𝐴) | |
2 | df-f 6577 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐶 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐶)) | |
3 | 2 | baibr 536 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → (ran 𝑓 ⊆ 𝐶 ↔ 𝑓:𝐴⟶𝐶)) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → (ran 𝑓 ⊆ 𝐶 ↔ 𝑓:𝐴⟶𝐶)) |
5 | 4 | pm5.32i 574 | . . . 4 ⊢ ((𝑓:𝐴⟶𝐵 ∧ ran 𝑓 ⊆ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐶)) |
6 | maprnin.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
7 | maprnin.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
8 | 6, 7 | elmap 8929 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵) |
9 | 8 | anbi1i 623 | . . . 4 ⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ ran 𝑓 ⊆ 𝐶)) |
10 | fin 6801 | . . . 4 ⊢ (𝑓:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐶)) | |
11 | 5, 9, 10 | 3bitr4ri 304 | . . 3 ⊢ (𝑓:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)) |
12 | 11 | abbii 2812 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴⟶(𝐵 ∩ 𝐶)} = {𝑓 ∣ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)} |
13 | 6 | inex1 5335 | . . 3 ⊢ (𝐵 ∩ 𝐶) ∈ V |
14 | 13, 7 | mapval 8896 | . 2 ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶(𝐵 ∩ 𝐶)} |
15 | df-rab 3444 | . 2 ⊢ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} = {𝑓 ∣ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)} | |
16 | 12, 14, 15 | 3eqtr4i 2778 | 1 ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 |
This theorem is referenced by: fpwrelmapffs 32748 |
Copyright terms: Public domain | W3C validator |