| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > maprnin | Structured version Visualization version GIF version | ||
| Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
| Ref | Expression |
|---|---|
| maprnin.1 | ⊢ 𝐴 ∈ V |
| maprnin.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| maprnin | ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6670 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓 Fn 𝐴) | |
| 2 | df-f 6503 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐶 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐶)) | |
| 3 | 2 | baibr 536 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → (ran 𝑓 ⊆ 𝐶 ↔ 𝑓:𝐴⟶𝐶)) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → (ran 𝑓 ⊆ 𝐶 ↔ 𝑓:𝐴⟶𝐶)) |
| 5 | 4 | pm5.32i 574 | . . . 4 ⊢ ((𝑓:𝐴⟶𝐵 ∧ ran 𝑓 ⊆ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐶)) |
| 6 | maprnin.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 7 | maprnin.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 8 | 6, 7 | elmap 8821 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵) |
| 9 | 8 | anbi1i 624 | . . . 4 ⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ ran 𝑓 ⊆ 𝐶)) |
| 10 | fin 6722 | . . . 4 ⊢ (𝑓:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐶)) | |
| 11 | 5, 9, 10 | 3bitr4ri 304 | . . 3 ⊢ (𝑓:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)) |
| 12 | 11 | abbii 2796 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴⟶(𝐵 ∩ 𝐶)} = {𝑓 ∣ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)} |
| 13 | 6 | inex1 5267 | . . 3 ⊢ (𝐵 ∩ 𝐶) ∈ V |
| 14 | 13, 7 | mapval 8788 | . 2 ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶(𝐵 ∩ 𝐶)} |
| 15 | df-rab 3403 | . 2 ⊢ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} = {𝑓 ∣ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)} | |
| 16 | 12, 14, 15 | 3eqtr4i 2762 | 1 ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3402 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ran crn 5632 Fn wfn 6494 ⟶wf 6495 (class class class)co 7369 ↑m cmap 8776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 |
| This theorem is referenced by: fpwrelmapffs 32630 |
| Copyright terms: Public domain | W3C validator |