![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maprnin | Structured version Visualization version GIF version |
Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
Ref | Expression |
---|---|
maprnin.1 | ⊢ 𝐴 ∈ V |
maprnin.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
maprnin | ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6737 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓 Fn 𝐴) | |
2 | df-f 6567 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐶 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐶)) | |
3 | 2 | baibr 536 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → (ran 𝑓 ⊆ 𝐶 ↔ 𝑓:𝐴⟶𝐶)) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → (ran 𝑓 ⊆ 𝐶 ↔ 𝑓:𝐴⟶𝐶)) |
5 | 4 | pm5.32i 574 | . . . 4 ⊢ ((𝑓:𝐴⟶𝐵 ∧ ran 𝑓 ⊆ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐶)) |
6 | maprnin.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
7 | maprnin.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
8 | 6, 7 | elmap 8910 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵) |
9 | 8 | anbi1i 624 | . . . 4 ⊢ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ ran 𝑓 ⊆ 𝐶)) |
10 | fin 6789 | . . . 4 ⊢ (𝑓:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐶)) | |
11 | 5, 9, 10 | 3bitr4ri 304 | . . 3 ⊢ (𝑓:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)) |
12 | 11 | abbii 2807 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴⟶(𝐵 ∩ 𝐶)} = {𝑓 ∣ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)} |
13 | 6 | inex1 5323 | . . 3 ⊢ (𝐵 ∩ 𝐶) ∈ V |
14 | 13, 7 | mapval 8877 | . 2 ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶(𝐵 ∩ 𝐶)} |
15 | df-rab 3434 | . 2 ⊢ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} = {𝑓 ∣ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ ran 𝑓 ⊆ 𝐶)} | |
16 | 12, 14, 15 | 3eqtr4i 2773 | 1 ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 {crab 3433 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ran crn 5690 Fn wfn 6558 ⟶wf 6559 (class class class)co 7431 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 |
This theorem is referenced by: fpwrelmapffs 32752 |
Copyright terms: Public domain | W3C validator |