Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maprnin Structured version   Visualization version   GIF version

Theorem maprnin 30968
Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.)
Hypotheses
Ref Expression
maprnin.1 𝐴 ∈ V
maprnin.2 𝐵 ∈ V
Assertion
Ref Expression
maprnin ((𝐵𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶}
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓

Proof of Theorem maprnin
StepHypRef Expression
1 ffn 6584 . . . . . 6 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2 df-f 6422 . . . . . . 7 (𝑓:𝐴𝐶 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐶))
32baibr 536 . . . . . 6 (𝑓 Fn 𝐴 → (ran 𝑓𝐶𝑓:𝐴𝐶))
41, 3syl 17 . . . . 5 (𝑓:𝐴𝐵 → (ran 𝑓𝐶𝑓:𝐴𝐶))
54pm5.32i 574 . . . 4 ((𝑓:𝐴𝐵 ∧ ran 𝑓𝐶) ↔ (𝑓:𝐴𝐵𝑓:𝐴𝐶))
6 maprnin.2 . . . . . 6 𝐵 ∈ V
7 maprnin.1 . . . . . 6 𝐴 ∈ V
86, 7elmap 8617 . . . . 5 (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵)
98anbi1i 623 . . . 4 ((𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶) ↔ (𝑓:𝐴𝐵 ∧ ran 𝑓𝐶))
10 fin 6638 . . . 4 (𝑓:𝐴⟶(𝐵𝐶) ↔ (𝑓:𝐴𝐵𝑓:𝐴𝐶))
115, 9, 103bitr4ri 303 . . 3 (𝑓:𝐴⟶(𝐵𝐶) ↔ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶))
1211abbii 2809 . 2 {𝑓𝑓:𝐴⟶(𝐵𝐶)} = {𝑓 ∣ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶)}
136inex1 5236 . . 3 (𝐵𝐶) ∈ V
1413, 7mapval 8585 . 2 ((𝐵𝐶) ↑m 𝐴) = {𝑓𝑓:𝐴⟶(𝐵𝐶)}
15 df-rab 3072 . 2 {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶} = {𝑓 ∣ (𝑓 ∈ (𝐵m 𝐴) ∧ ran 𝑓𝐶)}
1612, 14, 153eqtr4i 2776 1 ((𝐵𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  Vcvv 3422  cin 3882  wss 3883  ran crn 5581   Fn wfn 6413  wf 6414  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575
This theorem is referenced by:  fpwrelmapffs  30971
  Copyright terms: Public domain W3C validator