Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inmap Structured version   Visualization version   GIF version

Theorem inmap 43128
Description: Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
inmap.a (𝜑𝐴𝑉)
inmap.b (𝜑𝐵𝑊)
inmap.c (𝜑𝐶𝑍)
Assertion
Ref Expression
inmap (𝜑 → ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) = ((𝐴𝐵) ↑m 𝐶))

Proof of Theorem inmap
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elinel1 4143 . . . . . . . . 9 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓 ∈ (𝐴m 𝐶))
2 elmapi 8709 . . . . . . . . 9 (𝑓 ∈ (𝐴m 𝐶) → 𝑓:𝐶𝐴)
31, 2syl 17 . . . . . . . 8 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓:𝐶𝐴)
4 elinel2 4144 . . . . . . . . 9 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓 ∈ (𝐵m 𝐶))
5 elmapi 8709 . . . . . . . . 9 (𝑓 ∈ (𝐵m 𝐶) → 𝑓:𝐶𝐵)
64, 5syl 17 . . . . . . . 8 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓:𝐶𝐵)
73, 6jca 512 . . . . . . 7 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → (𝑓:𝐶𝐴𝑓:𝐶𝐵))
8 fin 6706 . . . . . . 7 (𝑓:𝐶⟶(𝐴𝐵) ↔ (𝑓:𝐶𝐴𝑓:𝐶𝐵))
97, 8sylibr 233 . . . . . 6 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓:𝐶⟶(𝐴𝐵))
109adantl 482 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))) → 𝑓:𝐶⟶(𝐴𝐵))
11 inmap.a . . . . . . . 8 (𝜑𝐴𝑉)
12 inss1 4176 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
1312a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
1411, 13ssexd 5269 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ V)
15 inmap.c . . . . . . 7 (𝜑𝐶𝑍)
1614, 15elmapd 8701 . . . . . 6 (𝜑 → (𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) ↔ 𝑓:𝐶⟶(𝐴𝐵)))
1716adantr 481 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))) → (𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) ↔ 𝑓:𝐶⟶(𝐴𝐵)))
1810, 17mpbird 256 . . . 4 ((𝜑𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))) → 𝑓 ∈ ((𝐴𝐵) ↑m 𝐶))
1918ralrimiva 3139 . . 3 (𝜑 → ∀𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))𝑓 ∈ ((𝐴𝐵) ↑m 𝐶))
20 dfss3 3920 . . 3 (((𝐴m 𝐶) ∩ (𝐵m 𝐶)) ⊆ ((𝐴𝐵) ↑m 𝐶) ↔ ∀𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))𝑓 ∈ ((𝐴𝐵) ↑m 𝐶))
2119, 20sylibr 233 . 2 (𝜑 → ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) ⊆ ((𝐴𝐵) ↑m 𝐶))
22 mapss 8749 . . . 4 ((𝐴𝑉 ∧ (𝐴𝐵) ⊆ 𝐴) → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐴m 𝐶))
2311, 13, 22syl2anc 584 . . 3 (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐴m 𝐶))
24 inmap.b . . . 4 (𝜑𝐵𝑊)
25 inss2 4177 . . . . 5 (𝐴𝐵) ⊆ 𝐵
2625a1i 11 . . . 4 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
27 mapss 8749 . . . 4 ((𝐵𝑊 ∧ (𝐴𝐵) ⊆ 𝐵) → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐵m 𝐶))
2824, 26, 27syl2anc 584 . . 3 (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐵m 𝐶))
2923, 28ssind 4180 . 2 (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)))
3021, 29eqssd 3949 1 (𝜑 → ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) = ((𝐴𝐵) ↑m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  Vcvv 3441  cin 3897  wss 3898  wf 6476  (class class class)co 7338  m cmap 8687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-1st 7900  df-2nd 7901  df-map 8689
This theorem is referenced by:  vonvolmbllem  44587  vonvolmbl  44588
  Copyright terms: Public domain W3C validator