| Step | Hyp | Ref
| Expression |
| 1 | | elinel1 4181 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) → 𝑓 ∈ (𝐴 ↑m 𝐶)) |
| 2 | | elmapi 8871 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓:𝐶⟶𝐴) |
| 3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) → 𝑓:𝐶⟶𝐴) |
| 4 | | elinel2 4182 |
. . . . . . . . 9
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) → 𝑓 ∈ (𝐵 ↑m 𝐶)) |
| 5 | | elmapi 8871 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝐵 ↑m 𝐶) → 𝑓:𝐶⟶𝐵) |
| 6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) → 𝑓:𝐶⟶𝐵) |
| 7 | 3, 6 | jca 511 |
. . . . . . 7
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) → (𝑓:𝐶⟶𝐴 ∧ 𝑓:𝐶⟶𝐵)) |
| 8 | | fin 6768 |
. . . . . . 7
⊢ (𝑓:𝐶⟶(𝐴 ∩ 𝐵) ↔ (𝑓:𝐶⟶𝐴 ∧ 𝑓:𝐶⟶𝐵)) |
| 9 | 7, 8 | sylibr 234 |
. . . . . 6
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) → 𝑓:𝐶⟶(𝐴 ∩ 𝐵)) |
| 10 | 9 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶))) → 𝑓:𝐶⟶(𝐴 ∩ 𝐵)) |
| 11 | | inmap.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 12 | | inss1 4217 |
. . . . . . . . 9
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| 13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐴) |
| 14 | 11, 13 | ssexd 5304 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ V) |
| 15 | | inmap.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑍) |
| 16 | 14, 15 | elmapd 8862 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ ((𝐴 ∩ 𝐵) ↑m 𝐶) ↔ 𝑓:𝐶⟶(𝐴 ∩ 𝐵))) |
| 17 | 16 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶))) → (𝑓 ∈ ((𝐴 ∩ 𝐵) ↑m 𝐶) ↔ 𝑓:𝐶⟶(𝐴 ∩ 𝐵))) |
| 18 | 10, 17 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶))) → 𝑓 ∈ ((𝐴 ∩ 𝐵) ↑m 𝐶)) |
| 19 | 18 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶))𝑓 ∈ ((𝐴 ∩ 𝐵) ↑m 𝐶)) |
| 20 | | dfss3 3952 |
. . 3
⊢ (((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) ⊆ ((𝐴 ∩ 𝐵) ↑m 𝐶) ↔ ∀𝑓 ∈ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶))𝑓 ∈ ((𝐴 ∩ 𝐵) ↑m 𝐶)) |
| 21 | 19, 20 | sylibr 234 |
. 2
⊢ (𝜑 → ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) ⊆ ((𝐴 ∩ 𝐵) ↑m 𝐶)) |
| 22 | | mapss 8911 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → ((𝐴 ∩ 𝐵) ↑m 𝐶) ⊆ (𝐴 ↑m 𝐶)) |
| 23 | 11, 13, 22 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝐴 ∩ 𝐵) ↑m 𝐶) ⊆ (𝐴 ↑m 𝐶)) |
| 24 | | inmap.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 25 | | inss2 4218 |
. . . . 5
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| 26 | 25 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐵) |
| 27 | | mapss 8911 |
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 28 | 24, 26, 27 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝐴 ∩ 𝐵) ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 29 | 23, 28 | ssind 4221 |
. 2
⊢ (𝜑 → ((𝐴 ∩ 𝐵) ↑m 𝐶) ⊆ ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶))) |
| 30 | 21, 29 | eqssd 3981 |
1
⊢ (𝜑 → ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) = ((𝐴 ∩ 𝐵) ↑m 𝐶)) |