Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inmap Structured version   Visualization version   GIF version

Theorem inmap 42363
Description: Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
inmap.a (𝜑𝐴𝑉)
inmap.b (𝜑𝐵𝑊)
inmap.c (𝜑𝐶𝑍)
Assertion
Ref Expression
inmap (𝜑 → ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) = ((𝐴𝐵) ↑m 𝐶))

Proof of Theorem inmap
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elinel1 4095 . . . . . . . . 9 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓 ∈ (𝐴m 𝐶))
2 elmapi 8508 . . . . . . . . 9 (𝑓 ∈ (𝐴m 𝐶) → 𝑓:𝐶𝐴)
31, 2syl 17 . . . . . . . 8 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓:𝐶𝐴)
4 elinel2 4096 . . . . . . . . 9 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓 ∈ (𝐵m 𝐶))
5 elmapi 8508 . . . . . . . . 9 (𝑓 ∈ (𝐵m 𝐶) → 𝑓:𝐶𝐵)
64, 5syl 17 . . . . . . . 8 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓:𝐶𝐵)
73, 6jca 515 . . . . . . 7 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → (𝑓:𝐶𝐴𝑓:𝐶𝐵))
8 fin 6577 . . . . . . 7 (𝑓:𝐶⟶(𝐴𝐵) ↔ (𝑓:𝐶𝐴𝑓:𝐶𝐵))
97, 8sylibr 237 . . . . . 6 (𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) → 𝑓:𝐶⟶(𝐴𝐵))
109adantl 485 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))) → 𝑓:𝐶⟶(𝐴𝐵))
11 inmap.a . . . . . . . 8 (𝜑𝐴𝑉)
12 inss1 4129 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
1312a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
1411, 13ssexd 5202 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ V)
15 inmap.c . . . . . . 7 (𝜑𝐶𝑍)
1614, 15elmapd 8500 . . . . . 6 (𝜑 → (𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) ↔ 𝑓:𝐶⟶(𝐴𝐵)))
1716adantr 484 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))) → (𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) ↔ 𝑓:𝐶⟶(𝐴𝐵)))
1810, 17mpbird 260 . . . 4 ((𝜑𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))) → 𝑓 ∈ ((𝐴𝐵) ↑m 𝐶))
1918ralrimiva 3095 . . 3 (𝜑 → ∀𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))𝑓 ∈ ((𝐴𝐵) ↑m 𝐶))
20 dfss3 3875 . . 3 (((𝐴m 𝐶) ∩ (𝐵m 𝐶)) ⊆ ((𝐴𝐵) ↑m 𝐶) ↔ ∀𝑓 ∈ ((𝐴m 𝐶) ∩ (𝐵m 𝐶))𝑓 ∈ ((𝐴𝐵) ↑m 𝐶))
2119, 20sylibr 237 . 2 (𝜑 → ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) ⊆ ((𝐴𝐵) ↑m 𝐶))
22 mapss 8548 . . . 4 ((𝐴𝑉 ∧ (𝐴𝐵) ⊆ 𝐴) → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐴m 𝐶))
2311, 13, 22syl2anc 587 . . 3 (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐴m 𝐶))
24 inmap.b . . . 4 (𝜑𝐵𝑊)
25 inss2 4130 . . . . 5 (𝐴𝐵) ⊆ 𝐵
2625a1i 11 . . . 4 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
27 mapss 8548 . . . 4 ((𝐵𝑊 ∧ (𝐴𝐵) ⊆ 𝐵) → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐵m 𝐶))
2824, 26, 27syl2anc 587 . . 3 (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐵m 𝐶))
2923, 28ssind 4133 . 2 (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ ((𝐴m 𝐶) ∩ (𝐵m 𝐶)))
3021, 29eqssd 3904 1 (𝜑 → ((𝐴m 𝐶) ∩ (𝐵m 𝐶)) = ((𝐴𝐵) ↑m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  cin 3852  wss 3853  wf 6354  (class class class)co 7191  m cmap 8486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488
This theorem is referenced by:  vonvolmbllem  43816  vonvolmbl  43817
  Copyright terms: Public domain W3C validator