![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrislfupgr | Structured version Visualization version GIF version |
Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.) |
Ref | Expression |
---|---|
umgrislfupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
umgrislfupgr.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
umgrislfupgr | ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrupgr 28988 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
2 | umgrislfupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | umgrislfupgr.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | 2, 3 | umgrf 28983 | . . . 4 ⊢ (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
5 | id 22 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | |
6 | 2re 12319 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
7 | 6 | leidi 11780 | . . . . . . . . . 10 ⊢ 2 ≤ 2 |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → 2 ≤ 2) |
9 | breq2 5153 | . . . . . . . . 9 ⊢ ((♯‘𝑥) = 2 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 2)) | |
10 | 8, 9 | mpbird 256 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → 2 ≤ (♯‘𝑥)) |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝑉 → ((♯‘𝑥) = 2 → 2 ≤ (♯‘𝑥))) |
12 | 11 | ss2rabi 4070 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
14 | 5, 13 | fssd 6740 | . . . 4 ⊢ (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
15 | 4, 14 | syl 17 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
16 | 1, 15 | jca 510 | . 2 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) |
17 | 2, 3 | upgrf 28971 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
18 | fin 6777 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) | |
19 | umgrislfupgrlem 29007 | . . . . . 6 ⊢ ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} | |
20 | feq3 6706 | . . . . . 6 ⊢ (({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} → (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
22 | 18, 21 | sylbb1 236 | . . . 4 ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
23 | 17, 22 | sylan 578 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
24 | 2, 3 | isumgr 28980 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
25 | 24 | adantr 479 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (𝐺 ∈ UMGraph ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
26 | 23, 25 | mpbird 256 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐺 ∈ UMGraph) |
27 | 16, 26 | impbii 208 | 1 ⊢ (𝐺 ∈ UMGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 ∖ cdif 3941 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 𝒫 cpw 4604 {csn 4630 class class class wbr 5149 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 ≤ cle 11281 2c2 12300 ♯chash 14325 Vtxcvtx 28881 iEdgciedg 28882 UPGraphcupgr 28965 UMGraphcumgr 28966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-fz 13520 df-hash 14326 df-upgr 28967 df-umgr 28968 |
This theorem is referenced by: vdumgr0 29366 vtxdumgrval 29372 umgrn1cycl 29690 upgracycumgr 34891 |
Copyright terms: Public domain | W3C validator |