MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrislfuspgr Structured version   Visualization version   GIF version

Theorem usgrislfuspgr 27554
Description: A simple graph is a loop-free simple pseudograph. (Contributed by AV, 27-Jan-2021.)
Hypotheses
Ref Expression
usgrislfuspgr.v 𝑉 = (Vtx‘𝐺)
usgrislfuspgr.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgrislfuspgr (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem usgrislfuspgr
StepHypRef Expression
1 usgruspgr 27548 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 usgrislfuspgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 usgrislfuspgr.i . . . . 5 𝐼 = (iEdg‘𝐺)
42, 3usgrfs 27527 . . . 4 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
5 f1f 6670 . . . . 5 (𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 2re 12047 . . . . . . . . . . 11 2 ∈ ℝ
76leidi 11509 . . . . . . . . . 10 2 ≤ 2
87a1i 11 . . . . . . . . 9 ((♯‘𝑥) = 2 → 2 ≤ 2)
9 breq2 5078 . . . . . . . . 9 ((♯‘𝑥) = 2 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 2))
108, 9mpbird 256 . . . . . . . 8 ((♯‘𝑥) = 2 → 2 ≤ (♯‘𝑥))
1110a1i 11 . . . . . . 7 (𝑥 ∈ 𝒫 𝑉 → ((♯‘𝑥) = 2 → 2 ≤ (♯‘𝑥)))
1211ss2rabi 4010 . . . . . 6 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
1312a1i 11 . . . . 5 (𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
145, 13fssd 6618 . . . 4 (𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
154, 14syl 17 . . 3 (𝐺 ∈ USGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
161, 15jca 512 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
172, 3uspgrf 27524 . . . 4 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 df-f1 6438 . . . . . 6 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ Fun 𝐼))
19 fin 6654 . . . . . . . . . . 11 (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
20 umgrislfupgrlem 27492 . . . . . . . . . . . 12 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
21 feq3 6583 . . . . . . . . . . . 12 (({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} → (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
2220, 21ax-mp 5 . . . . . . . . . . 11 (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
2319, 22sylbb1 236 . . . . . . . . . 10 ((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
2423anim1i 615 . . . . . . . . 9 (((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ Fun 𝐼) → (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ Fun 𝐼))
25 df-f1 6438 . . . . . . . . 9 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ Fun 𝐼))
2624, 25sylibr 233 . . . . . . . 8 (((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ Fun 𝐼) → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
2726ex 413 . . . . . . 7 ((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (Fun 𝐼𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
2827impancom 452 . . . . . 6 ((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ Fun 𝐼) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
2918, 28sylbi 216 . . . . 5 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
3029imp 407 . . . 4 ((𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
3117, 30sylan 580 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
322, 3isusgr 27523 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USGraph ↔ 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
3332adantr 481 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (𝐺 ∈ USGraph ↔ 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
3431, 33mpbird 256 . 2 ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐺 ∈ USGraph)
3516, 34impbii 208 1 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  ccnv 5588  dom cdm 5589  Fun wfun 6427  wf 6429  1-1wf1 6430  cfv 6433  cle 11010  2c2 12028  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  USPGraphcuspgr 27518  USGraphcusgr 27519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-uspgr 27520  df-usgr 27521
This theorem is referenced by:  usgr1vr  27622
  Copyright terms: Public domain W3C validator