MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrislfuspgr Structured version   Visualization version   GIF version

Theorem usgrislfuspgr 29132
Description: A simple graph is a loop-free simple pseudograph. (Contributed by AV, 27-Jan-2021.)
Hypotheses
Ref Expression
usgrislfuspgr.v 𝑉 = (Vtx‘𝐺)
usgrislfuspgr.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgrislfuspgr (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem usgrislfuspgr
StepHypRef Expression
1 usgruspgr 29125 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 usgrislfuspgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 usgrislfuspgr.i . . . . 5 𝐼 = (iEdg‘𝐺)
42, 3usgrfs 29102 . . . 4 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
5 f1f 6720 . . . . 5 (𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 2re 12202 . . . . . . . . . . 11 2 ∈ ℝ
76leidi 11654 . . . . . . . . . 10 2 ≤ 2
87a1i 11 . . . . . . . . 9 ((♯‘𝑥) = 2 → 2 ≤ 2)
9 breq2 5096 . . . . . . . . 9 ((♯‘𝑥) = 2 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 2))
108, 9mpbird 257 . . . . . . . 8 ((♯‘𝑥) = 2 → 2 ≤ (♯‘𝑥))
1110a1i 11 . . . . . . 7 (𝑥 ∈ 𝒫 𝑉 → ((♯‘𝑥) = 2 → 2 ≤ (♯‘𝑥)))
1211ss2rabi 4028 . . . . . 6 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
1312a1i 11 . . . . 5 (𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
145, 13fssd 6669 . . . 4 (𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
154, 14syl 17 . . 3 (𝐺 ∈ USGraph → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
161, 15jca 511 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
172, 3uspgrf 29099 . . . 4 (𝐺 ∈ USPGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
18 df-f1 6487 . . . . . 6 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ Fun 𝐼))
19 fin 6704 . . . . . . . . . . 11 (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
20 umgrislfupgrlem 29067 . . . . . . . . . . . 12 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
21 feq3 6632 . . . . . . . . . . . 12 (({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} → (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
2220, 21ax-mp 5 . . . . . . . . . . 11 (𝐼:dom 𝐼⟶({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
2319, 22sylbb1 237 . . . . . . . . . 10 ((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
2423anim1i 615 . . . . . . . . 9 (((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ Fun 𝐼) → (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ Fun 𝐼))
25 df-f1 6487 . . . . . . . . 9 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ (𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2} ∧ Fun 𝐼))
2624, 25sylibr 234 . . . . . . . 8 (((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) ∧ Fun 𝐼) → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
2726ex 412 . . . . . . 7 ((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (Fun 𝐼𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
2827impancom 451 . . . . . 6 ((𝐼:dom 𝐼⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ Fun 𝐼) → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
2918, 28sylbi 217 . . . . 5 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
3029imp 406 . . . 4 ((𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
3117, 30sylan 580 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2})
322, 3isusgr 29098 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USGraph ↔ 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
3332adantr 480 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (𝐺 ∈ USGraph ↔ 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}))
3431, 33mpbird 257 . 2 ((𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐺 ∈ USGraph)
3516, 34impbii 209 1 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394  cdif 3900  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   class class class wbr 5092  ccnv 5618  dom cdm 5619  Fun wfun 6476  wf 6478  1-1wf1 6479  cfv 6482  cle 11150  2c2 12183  chash 14237  Vtxcvtx 28941  iEdgciedg 28942  USPGraphcuspgr 29093  USGraphcusgr 29094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-uspgr 29095  df-usgr 29096
This theorem is referenced by:  usgr1vr  29200
  Copyright terms: Public domain W3C validator