Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneer Structured version   Visualization version   GIF version

Theorem fneer 36386
Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fneval.1 = (Fne ∩ Fne)
Assertion
Ref Expression
fneer Er V

Proof of Theorem fneer
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . 2 (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦))
2 fneval.1 . . . . . 6 = (Fne ∩ Fne)
3 inss1 4187 . . . . . 6 (Fne ∩ Fne) ⊆ Fne
42, 3eqsstri 3981 . . . . 5 ⊆ Fne
5 fnerel 36371 . . . . 5 Rel Fne
6 relss 5722 . . . . 5 ( ⊆ Fne → (Rel Fne → Rel ))
74, 5, 6mp2 9 . . . 4 Rel
8 dfrel4v 6137 . . . 4 (Rel = {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦})
97, 8mpbi 230 . . 3 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦}
102fneval 36385 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)))
1110el2v 3443 . . . 4 (𝑥 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))
1211opabbii 5158 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦} = {⟨𝑥, 𝑦⟩ ∣ (topGen‘𝑥) = (topGen‘𝑦)}
139, 12eqtri 2754 . 2 = {⟨𝑥, 𝑦⟩ ∣ (topGen‘𝑥) = (topGen‘𝑦)}
141, 13eqer 8658 1 Er V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  Vcvv 3436  cin 3901  wss 3902   class class class wbr 5091  {copab 5153  ccnv 5615  Rel wrel 5621  cfv 6481   Er wer 8619  topGenctg 17338  Fnecfne 36369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-er 8622  df-topgen 17344  df-fne 36370
This theorem is referenced by:  topfneec  36388  topfneec2  36389
  Copyright terms: Public domain W3C validator