![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneer | Structured version Visualization version GIF version |
Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fneval.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
fneer | ⊢ ∼ Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . 2 ⊢ (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦)) | |
2 | fneval.1 | . . . . . 6 ⊢ ∼ = (Fne ∩ ◡Fne) | |
3 | inss1 4228 | . . . . . 6 ⊢ (Fne ∩ ◡Fne) ⊆ Fne | |
4 | 2, 3 | eqsstri 4016 | . . . . 5 ⊢ ∼ ⊆ Fne |
5 | fnerel 35526 | . . . . 5 ⊢ Rel Fne | |
6 | relss 5781 | . . . . 5 ⊢ ( ∼ ⊆ Fne → (Rel Fne → Rel ∼ )) | |
7 | 4, 5, 6 | mp2 9 | . . . 4 ⊢ Rel ∼ |
8 | dfrel4v 6189 | . . . 4 ⊢ (Rel ∼ ↔ ∼ = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∼ 𝑦}) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∼ 𝑦} |
10 | 2 | fneval 35540 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))) |
11 | 10 | el2v 3482 | . . . 4 ⊢ (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)) |
12 | 11 | opabbii 5215 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∼ 𝑦} = {⟨𝑥, 𝑦⟩ ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
13 | 9, 12 | eqtri 2760 | . 2 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
14 | 1, 13 | eqer 8740 | 1 ⊢ ∼ Er V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 {copab 5210 ◡ccnv 5675 Rel wrel 5681 ‘cfv 6543 Er wer 8702 topGenctg 17387 Fnecfne 35524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-er 8705 df-topgen 17393 df-fne 35525 |
This theorem is referenced by: topfneec 35543 topfneec2 35544 |
Copyright terms: Public domain | W3C validator |