| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneer | Structured version Visualization version GIF version | ||
| Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fneval.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
| Ref | Expression |
|---|---|
| fneer | ⊢ ∼ Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . 2 ⊢ (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦)) | |
| 2 | fneval.1 | . . . . . 6 ⊢ ∼ = (Fne ∩ ◡Fne) | |
| 3 | inss1 4187 | . . . . . 6 ⊢ (Fne ∩ ◡Fne) ⊆ Fne | |
| 4 | 2, 3 | eqsstri 3981 | . . . . 5 ⊢ ∼ ⊆ Fne |
| 5 | fnerel 36371 | . . . . 5 ⊢ Rel Fne | |
| 6 | relss 5722 | . . . . 5 ⊢ ( ∼ ⊆ Fne → (Rel Fne → Rel ∼ )) | |
| 7 | 4, 5, 6 | mp2 9 | . . . 4 ⊢ Rel ∼ |
| 8 | dfrel4v 6137 | . . . 4 ⊢ (Rel ∼ ↔ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦}) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} |
| 10 | 2 | fneval 36385 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))) |
| 11 | 10 | el2v 3443 | . . . 4 ⊢ (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)) |
| 12 | 11 | opabbii 5158 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
| 13 | 9, 12 | eqtri 2754 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
| 14 | 1, 13 | eqer 8658 | 1 ⊢ ∼ Er V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 class class class wbr 5091 {copab 5153 ◡ccnv 5615 Rel wrel 5621 ‘cfv 6481 Er wer 8619 topGenctg 17338 Fnecfne 36369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-er 8622 df-topgen 17344 df-fne 36370 |
| This theorem is referenced by: topfneec 36388 topfneec2 36389 |
| Copyright terms: Public domain | W3C validator |