![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneer | Structured version Visualization version GIF version |
Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fneval.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
fneer | ⊢ ∼ Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6493 | . 2 ⊢ (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦)) | |
2 | fneval.1 | . . . . . 6 ⊢ ∼ = (Fne ∩ ◡Fne) | |
3 | inss1 4087 | . . . . . 6 ⊢ (Fne ∩ ◡Fne) ⊆ Fne | |
4 | 2, 3 | eqsstri 3887 | . . . . 5 ⊢ ∼ ⊆ Fne |
5 | fnerel 33147 | . . . . 5 ⊢ Rel Fne | |
6 | relss 5499 | . . . . 5 ⊢ ( ∼ ⊆ Fne → (Rel Fne → Rel ∼ )) | |
7 | 4, 5, 6 | mp2 9 | . . . 4 ⊢ Rel ∼ |
8 | dfrel4v 5881 | . . . 4 ⊢ (Rel ∼ ↔ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦}) | |
9 | 7, 8 | mpbi 222 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} |
10 | 2 | fneval 33161 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))) |
11 | 10 | el2v 3416 | . . . 4 ⊢ (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)) |
12 | 11 | opabbii 4990 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
13 | 9, 12 | eqtri 2796 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
14 | 1, 13 | eqer 8116 | 1 ⊢ ∼ Er V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1507 Vcvv 3409 ∩ cin 3824 ⊆ wss 3825 class class class wbr 4923 {copab 4985 ◡ccnv 5399 Rel wrel 5405 ‘cfv 6182 Er wer 8078 topGenctg 16557 Fnecfne 33145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-iota 6146 df-fun 6184 df-fv 6190 df-er 8081 df-topgen 16563 df-fne 33146 |
This theorem is referenced by: topfneec 33164 topfneec2 33165 |
Copyright terms: Public domain | W3C validator |