Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneer | Structured version Visualization version GIF version |
Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fneval.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
fneer | ⊢ ∼ Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . 2 ⊢ (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦)) | |
2 | fneval.1 | . . . . . 6 ⊢ ∼ = (Fne ∩ ◡Fne) | |
3 | inss1 4159 | . . . . . 6 ⊢ (Fne ∩ ◡Fne) ⊆ Fne | |
4 | 2, 3 | eqsstri 3951 | . . . . 5 ⊢ ∼ ⊆ Fne |
5 | fnerel 34454 | . . . . 5 ⊢ Rel Fne | |
6 | relss 5682 | . . . . 5 ⊢ ( ∼ ⊆ Fne → (Rel Fne → Rel ∼ )) | |
7 | 4, 5, 6 | mp2 9 | . . . 4 ⊢ Rel ∼ |
8 | dfrel4v 6082 | . . . 4 ⊢ (Rel ∼ ↔ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦}) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} |
10 | 2 | fneval 34468 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))) |
11 | 10 | el2v 3430 | . . . 4 ⊢ (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)) |
12 | 11 | opabbii 5137 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
13 | 9, 12 | eqtri 2766 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
14 | 1, 13 | eqer 8491 | 1 ⊢ ∼ Er V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 {copab 5132 ◡ccnv 5579 Rel wrel 5585 ‘cfv 6418 Er wer 8453 topGenctg 17065 Fnecfne 34452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-er 8456 df-topgen 17071 df-fne 34453 |
This theorem is referenced by: topfneec 34471 topfneec2 34472 |
Copyright terms: Public domain | W3C validator |