| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneer | Structured version Visualization version GIF version | ||
| Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fneval.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
| Ref | Expression |
|---|---|
| fneer | ⊢ ∼ Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . 2 ⊢ (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦)) | |
| 2 | fneval.1 | . . . . . 6 ⊢ ∼ = (Fne ∩ ◡Fne) | |
| 3 | inss1 4217 | . . . . . 6 ⊢ (Fne ∩ ◡Fne) ⊆ Fne | |
| 4 | 2, 3 | eqsstri 4010 | . . . . 5 ⊢ ∼ ⊆ Fne |
| 5 | fnerel 36361 | . . . . 5 ⊢ Rel Fne | |
| 6 | relss 5765 | . . . . 5 ⊢ ( ∼ ⊆ Fne → (Rel Fne → Rel ∼ )) | |
| 7 | 4, 5, 6 | mp2 9 | . . . 4 ⊢ Rel ∼ |
| 8 | dfrel4v 6184 | . . . 4 ⊢ (Rel ∼ ↔ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦}) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} |
| 10 | 2 | fneval 36375 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))) |
| 11 | 10 | el2v 3471 | . . . 4 ⊢ (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)) |
| 12 | 11 | opabbii 5191 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
| 13 | 9, 12 | eqtri 2759 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
| 14 | 1, 13 | eqer 8760 | 1 ⊢ ∼ Er V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5124 {copab 5186 ◡ccnv 5658 Rel wrel 5664 ‘cfv 6536 Er wer 8721 topGenctg 17456 Fnecfne 36359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-er 8724 df-topgen 17462 df-fne 36360 |
| This theorem is referenced by: topfneec 36378 topfneec2 36379 |
| Copyright terms: Public domain | W3C validator |