![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneer | Structured version Visualization version GIF version |
Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fneval.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
fneer | ⊢ ∼ Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . 2 ⊢ (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦)) | |
2 | fneval.1 | . . . . . 6 ⊢ ∼ = (Fne ∩ ◡Fne) | |
3 | inss1 4258 | . . . . . 6 ⊢ (Fne ∩ ◡Fne) ⊆ Fne | |
4 | 2, 3 | eqsstri 4043 | . . . . 5 ⊢ ∼ ⊆ Fne |
5 | fnerel 36304 | . . . . 5 ⊢ Rel Fne | |
6 | relss 5805 | . . . . 5 ⊢ ( ∼ ⊆ Fne → (Rel Fne → Rel ∼ )) | |
7 | 4, 5, 6 | mp2 9 | . . . 4 ⊢ Rel ∼ |
8 | dfrel4v 6221 | . . . 4 ⊢ (Rel ∼ ↔ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦}) | |
9 | 7, 8 | mpbi 230 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} |
10 | 2 | fneval 36318 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))) |
11 | 10 | el2v 3495 | . . . 4 ⊢ (𝑥 ∼ 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)) |
12 | 11 | opabbii 5233 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ∼ 𝑦} = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
13 | 9, 12 | eqtri 2768 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ (topGen‘𝑥) = (topGen‘𝑦)} |
14 | 1, 13 | eqer 8799 | 1 ⊢ ∼ Er V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 {copab 5228 ◡ccnv 5699 Rel wrel 5705 ‘cfv 6573 Er wer 8760 topGenctg 17497 Fnecfne 36302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-er 8763 df-topgen 17503 df-fne 36303 |
This theorem is referenced by: topfneec 36321 topfneec2 36322 |
Copyright terms: Public domain | W3C validator |