| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnetr | Structured version Visualization version GIF version | ||
| Description: Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fnetr | ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐴Fne𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 2 | eqid 2729 | . . . 4 ⊢ ∪ 𝐵 = ∪ 𝐵 | |
| 3 | 1, 2 | fnebas 36317 | . . 3 ⊢ (𝐴Fne𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| 4 | eqid 2729 | . . . 4 ⊢ ∪ 𝐶 = ∪ 𝐶 | |
| 5 | 2, 4 | fnebas 36317 | . . 3 ⊢ (𝐵Fne𝐶 → ∪ 𝐵 = ∪ 𝐶) |
| 6 | 3, 5 | sylan9eq 2784 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → ∪ 𝐴 = ∪ 𝐶) |
| 7 | fnerel 36311 | . . . . 5 ⊢ Rel Fne | |
| 8 | 7 | brrelex2i 5680 | . . . 4 ⊢ (𝐴Fne𝐵 → 𝐵 ∈ V) |
| 9 | 1, 2 | isfne4b 36314 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
| 10 | 9 | simplbda 499 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴Fne𝐵) → (topGen‘𝐴) ⊆ (topGen‘𝐵)) |
| 11 | 8, 10 | mpancom 688 | . . 3 ⊢ (𝐴Fne𝐵 → (topGen‘𝐴) ⊆ (topGen‘𝐵)) |
| 12 | 7 | brrelex2i 5680 | . . . 4 ⊢ (𝐵Fne𝐶 → 𝐶 ∈ V) |
| 13 | 2, 4 | isfne4b 36314 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐵Fne𝐶 ↔ (∪ 𝐵 = ∪ 𝐶 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐶)))) |
| 14 | 13 | simplbda 499 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵Fne𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
| 15 | 12, 14 | mpancom 688 | . . 3 ⊢ (𝐵Fne𝐶 → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
| 16 | 11, 15 | sylan9ss 3951 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → (topGen‘𝐴) ⊆ (topGen‘𝐶)) |
| 17 | 12 | adantl 481 | . . 3 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐶 ∈ V) |
| 18 | 1, 4 | isfne4b 36314 | . . 3 ⊢ (𝐶 ∈ V → (𝐴Fne𝐶 ↔ (∪ 𝐴 = ∪ 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶)))) |
| 19 | 17, 18 | syl 17 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → (𝐴Fne𝐶 ↔ (∪ 𝐴 = ∪ 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶)))) |
| 20 | 6, 16, 19 | mpbir2and 713 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐴Fne𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 ‘cfv 6486 topGenctg 17359 Fnecfne 36309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17365 df-fne 36310 |
| This theorem is referenced by: fnessref 36330 fnemeet2 36340 fnejoin2 36342 |
| Copyright terms: Public domain | W3C validator |