Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnetr Structured version   Visualization version   GIF version

Theorem fnetr 36334
Description: Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fnetr ((𝐴Fne𝐵𝐵Fne𝐶) → 𝐴Fne𝐶)

Proof of Theorem fnetr
StepHypRef Expression
1 eqid 2735 . . . 4 𝐴 = 𝐴
2 eqid 2735 . . . 4 𝐵 = 𝐵
31, 2fnebas 36327 . . 3 (𝐴Fne𝐵 𝐴 = 𝐵)
4 eqid 2735 . . . 4 𝐶 = 𝐶
52, 4fnebas 36327 . . 3 (𝐵Fne𝐶 𝐵 = 𝐶)
63, 5sylan9eq 2795 . 2 ((𝐴Fne𝐵𝐵Fne𝐶) → 𝐴 = 𝐶)
7 fnerel 36321 . . . . 5 Rel Fne
87brrelex2i 5746 . . . 4 (𝐴Fne𝐵𝐵 ∈ V)
91, 2isfne4b 36324 . . . . 5 (𝐵 ∈ V → (𝐴Fne𝐵 ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
109simplbda 499 . . . 4 ((𝐵 ∈ V ∧ 𝐴Fne𝐵) → (topGen‘𝐴) ⊆ (topGen‘𝐵))
118, 10mpancom 688 . . 3 (𝐴Fne𝐵 → (topGen‘𝐴) ⊆ (topGen‘𝐵))
127brrelex2i 5746 . . . 4 (𝐵Fne𝐶𝐶 ∈ V)
132, 4isfne4b 36324 . . . . 5 (𝐶 ∈ V → (𝐵Fne𝐶 ↔ ( 𝐵 = 𝐶 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐶))))
1413simplbda 499 . . . 4 ((𝐶 ∈ V ∧ 𝐵Fne𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))
1512, 14mpancom 688 . . 3 (𝐵Fne𝐶 → (topGen‘𝐵) ⊆ (topGen‘𝐶))
1611, 15sylan9ss 4009 . 2 ((𝐴Fne𝐵𝐵Fne𝐶) → (topGen‘𝐴) ⊆ (topGen‘𝐶))
1712adantl 481 . . 3 ((𝐴Fne𝐵𝐵Fne𝐶) → 𝐶 ∈ V)
181, 4isfne4b 36324 . . 3 (𝐶 ∈ V → (𝐴Fne𝐶 ↔ ( 𝐴 = 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶))))
1917, 18syl 17 . 2 ((𝐴Fne𝐵𝐵Fne𝐶) → (𝐴Fne𝐶 ↔ ( 𝐴 = 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶))))
206, 16, 19mpbir2and 713 1 ((𝐴Fne𝐵𝐵Fne𝐶) → 𝐴Fne𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963   cuni 4912   class class class wbr 5148  cfv 6563  topGenctg 17484  Fnecfne 36319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-topgen 17490  df-fne 36320
This theorem is referenced by:  fnessref  36340  fnemeet2  36350  fnejoin2  36352
  Copyright terms: Public domain W3C validator