![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnetr | Structured version Visualization version GIF version |
Description: Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fnetr | ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐴Fne𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2777 | . . . 4 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | eqid 2777 | . . . 4 ⊢ ∪ 𝐵 = ∪ 𝐵 | |
3 | 1, 2 | fnebas 32927 | . . 3 ⊢ (𝐴Fne𝐵 → ∪ 𝐴 = ∪ 𝐵) |
4 | eqid 2777 | . . . 4 ⊢ ∪ 𝐶 = ∪ 𝐶 | |
5 | 2, 4 | fnebas 32927 | . . 3 ⊢ (𝐵Fne𝐶 → ∪ 𝐵 = ∪ 𝐶) |
6 | 3, 5 | sylan9eq 2833 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → ∪ 𝐴 = ∪ 𝐶) |
7 | fnerel 32921 | . . . . 5 ⊢ Rel Fne | |
8 | 7 | brrelex2i 5407 | . . . 4 ⊢ (𝐴Fne𝐵 → 𝐵 ∈ V) |
9 | 1, 2 | isfne4b 32924 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
10 | 9 | simplbda 495 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴Fne𝐵) → (topGen‘𝐴) ⊆ (topGen‘𝐵)) |
11 | 8, 10 | mpancom 678 | . . 3 ⊢ (𝐴Fne𝐵 → (topGen‘𝐴) ⊆ (topGen‘𝐵)) |
12 | 7 | brrelex2i 5407 | . . . 4 ⊢ (𝐵Fne𝐶 → 𝐶 ∈ V) |
13 | 2, 4 | isfne4b 32924 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐵Fne𝐶 ↔ (∪ 𝐵 = ∪ 𝐶 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐶)))) |
14 | 13 | simplbda 495 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵Fne𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
15 | 12, 14 | mpancom 678 | . . 3 ⊢ (𝐵Fne𝐶 → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
16 | 11, 15 | sylan9ss 3833 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → (topGen‘𝐴) ⊆ (topGen‘𝐶)) |
17 | 12 | adantl 475 | . . 3 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐶 ∈ V) |
18 | 1, 4 | isfne4b 32924 | . . 3 ⊢ (𝐶 ∈ V → (𝐴Fne𝐶 ↔ (∪ 𝐴 = ∪ 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶)))) |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → (𝐴Fne𝐶 ↔ (∪ 𝐴 = ∪ 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶)))) |
20 | 6, 16, 19 | mpbir2and 703 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐴Fne𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ⊆ wss 3791 ∪ cuni 4671 class class class wbr 4886 ‘cfv 6135 topGenctg 16484 Fnecfne 32919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-topgen 16490 df-fne 32920 |
This theorem is referenced by: fnessref 32940 fnemeet2 32950 fnejoin2 32952 |
Copyright terms: Public domain | W3C validator |