Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’ βͺ π΄ =
βͺ π΄ |
2 | | eqid 2732 |
. . . 4
β’ βͺ π΅ =
βͺ π΅ |
3 | 1, 2 | fnebas 35217 |
. . 3
β’ (π΄Fneπ΅ β βͺ π΄ = βͺ
π΅) |
4 | | eqid 2732 |
. . . 4
β’ βͺ πΆ =
βͺ πΆ |
5 | 2, 4 | fnebas 35217 |
. . 3
β’ (π΅FneπΆ β βͺ π΅ = βͺ
πΆ) |
6 | 3, 5 | sylan9eq 2792 |
. 2
β’ ((π΄Fneπ΅ β§ π΅FneπΆ) β βͺ π΄ = βͺ
πΆ) |
7 | | fnerel 35211 |
. . . . 5
β’ Rel
Fne |
8 | 7 | brrelex2i 5731 |
. . . 4
β’ (π΄Fneπ΅ β π΅ β V) |
9 | 1, 2 | isfne4b 35214 |
. . . . 5
β’ (π΅ β V β (π΄Fneπ΅ β (βͺ π΄ = βͺ
π΅ β§ (topGenβπ΄) β (topGenβπ΅)))) |
10 | 9 | simplbda 500 |
. . . 4
β’ ((π΅ β V β§ π΄Fneπ΅) β (topGenβπ΄) β (topGenβπ΅)) |
11 | 8, 10 | mpancom 686 |
. . 3
β’ (π΄Fneπ΅ β (topGenβπ΄) β (topGenβπ΅)) |
12 | 7 | brrelex2i 5731 |
. . . 4
β’ (π΅FneπΆ β πΆ β V) |
13 | 2, 4 | isfne4b 35214 |
. . . . 5
β’ (πΆ β V β (π΅FneπΆ β (βͺ π΅ = βͺ
πΆ β§ (topGenβπ΅) β (topGenβπΆ)))) |
14 | 13 | simplbda 500 |
. . . 4
β’ ((πΆ β V β§ π΅FneπΆ) β (topGenβπ΅) β (topGenβπΆ)) |
15 | 12, 14 | mpancom 686 |
. . 3
β’ (π΅FneπΆ β (topGenβπ΅) β (topGenβπΆ)) |
16 | 11, 15 | sylan9ss 3994 |
. 2
β’ ((π΄Fneπ΅ β§ π΅FneπΆ) β (topGenβπ΄) β (topGenβπΆ)) |
17 | 12 | adantl 482 |
. . 3
β’ ((π΄Fneπ΅ β§ π΅FneπΆ) β πΆ β V) |
18 | 1, 4 | isfne4b 35214 |
. . 3
β’ (πΆ β V β (π΄FneπΆ β (βͺ π΄ = βͺ
πΆ β§ (topGenβπ΄) β (topGenβπΆ)))) |
19 | 17, 18 | syl 17 |
. 2
β’ ((π΄Fneπ΅ β§ π΅FneπΆ) β (π΄FneπΆ β (βͺ π΄ = βͺ
πΆ β§ (topGenβπ΄) β (topGenβπΆ)))) |
20 | 6, 16, 19 | mpbir2and 711 |
1
β’ ((π΄Fneπ΅ β§ π΅FneπΆ) β π΄FneπΆ) |