Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnetr | Structured version Visualization version GIF version |
Description: Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fnetr | ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐴Fne𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
2 | eqid 2738 | . . . 4 ⊢ ∪ 𝐵 = ∪ 𝐵 | |
3 | 1, 2 | fnebas 34533 | . . 3 ⊢ (𝐴Fne𝐵 → ∪ 𝐴 = ∪ 𝐵) |
4 | eqid 2738 | . . . 4 ⊢ ∪ 𝐶 = ∪ 𝐶 | |
5 | 2, 4 | fnebas 34533 | . . 3 ⊢ (𝐵Fne𝐶 → ∪ 𝐵 = ∪ 𝐶) |
6 | 3, 5 | sylan9eq 2798 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → ∪ 𝐴 = ∪ 𝐶) |
7 | fnerel 34527 | . . . . 5 ⊢ Rel Fne | |
8 | 7 | brrelex2i 5644 | . . . 4 ⊢ (𝐴Fne𝐵 → 𝐵 ∈ V) |
9 | 1, 2 | isfne4b 34530 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
10 | 9 | simplbda 500 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐴Fne𝐵) → (topGen‘𝐴) ⊆ (topGen‘𝐵)) |
11 | 8, 10 | mpancom 685 | . . 3 ⊢ (𝐴Fne𝐵 → (topGen‘𝐴) ⊆ (topGen‘𝐵)) |
12 | 7 | brrelex2i 5644 | . . . 4 ⊢ (𝐵Fne𝐶 → 𝐶 ∈ V) |
13 | 2, 4 | isfne4b 34530 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐵Fne𝐶 ↔ (∪ 𝐵 = ∪ 𝐶 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐶)))) |
14 | 13 | simplbda 500 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵Fne𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
15 | 12, 14 | mpancom 685 | . . 3 ⊢ (𝐵Fne𝐶 → (topGen‘𝐵) ⊆ (topGen‘𝐶)) |
16 | 11, 15 | sylan9ss 3934 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → (topGen‘𝐴) ⊆ (topGen‘𝐶)) |
17 | 12 | adantl 482 | . . 3 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐶 ∈ V) |
18 | 1, 4 | isfne4b 34530 | . . 3 ⊢ (𝐶 ∈ V → (𝐴Fne𝐶 ↔ (∪ 𝐴 = ∪ 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶)))) |
19 | 17, 18 | syl 17 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → (𝐴Fne𝐶 ↔ (∪ 𝐴 = ∪ 𝐶 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐶)))) |
20 | 6, 16, 19 | mpbir2and 710 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝐵Fne𝐶) → 𝐴Fne𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 ‘cfv 6433 topGenctg 17148 Fnecfne 34525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topgen 17154 df-fne 34526 |
This theorem is referenced by: fnessref 34546 fnemeet2 34556 fnejoin2 34558 |
Copyright terms: Public domain | W3C validator |