Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4 Structured version   Visualization version   GIF version

Theorem isfne4 36384
Description: The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne4 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))

Proof of Theorem isfne4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnerel 36382 . . 3 Rel Fne
21brrelex2i 5671 . 2 (𝐴Fne𝐵𝐵 ∈ V)
3 simpl 482 . . . . 5 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝑋 = 𝑌)
4 isfne.1 . . . . 5 𝑋 = 𝐴
5 isfne.2 . . . . 5 𝑌 = 𝐵
63, 4, 53eqtr3g 2789 . . . 4 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 = 𝐵)
7 fvex 6835 . . . . . . 7 (topGen‘𝐵) ∈ V
87ssex 5257 . . . . . 6 (𝐴 ⊆ (topGen‘𝐵) → 𝐴 ∈ V)
98adantl 481 . . . . 5 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V)
109uniexd 7675 . . . 4 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V)
116, 10eqeltrrd 2832 . . 3 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
12 uniexb 7697 . . 3 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1311, 12sylibr 234 . 2 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
144, 5isfne 36383 . . 3 (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
15 dfss3 3918 . . . . 5 (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵))
16 eltg 22872 . . . . . 6 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1716ralbidv 3155 . . . . 5 (𝐵 ∈ V → (∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1815, 17bitrid 283 . . . 4 (𝐵 ∈ V → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1918anbi2d 630 . . 3 (𝐵 ∈ V → ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
2014, 19bitr4d 282 . 2 (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵))))
212, 13, 20pm5.21nii 378 1 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856   class class class wbr 5089  cfv 6481  topGenctg 17341  Fnecfne 36380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-topgen 17347  df-fne 36381
This theorem is referenced by:  isfne4b  36385  isfne2  36386  isfne3  36387  fnebas  36388  fnetg  36389  topfne  36398  fnemeet1  36410  fnemeet2  36411  fnejoin1  36412  fnejoin2  36413
  Copyright terms: Public domain W3C validator