| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| isfne4 | ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnerel 36333 | . . 3 ⊢ Rel Fne | |
| 2 | 1 | brrelex2i 5698 | . 2 ⊢ (𝐴Fne𝐵 → 𝐵 ∈ V) |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝑋 = 𝑌) | |
| 4 | isfne.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
| 5 | isfne.2 | . . . . 5 ⊢ 𝑌 = ∪ 𝐵 | |
| 6 | 3, 4, 5 | 3eqtr3g 2788 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 = ∪ 𝐵) |
| 7 | fvex 6874 | . . . . . . 7 ⊢ (topGen‘𝐵) ∈ V | |
| 8 | 7 | ssex 5279 | . . . . . 6 ⊢ (𝐴 ⊆ (topGen‘𝐵) → 𝐴 ∈ V) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V) |
| 10 | 9 | uniexd 7721 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 ∈ V) |
| 11 | 6, 10 | eqeltrrd 2830 | . . 3 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐵 ∈ V) |
| 12 | uniexb 7743 | . . 3 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 13 | 11, 12 | sylibr 234 | . 2 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V) |
| 14 | 4, 5 | isfne 36334 | . . 3 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
| 15 | dfss3 3938 | . . . . 5 ⊢ (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵)) | |
| 16 | eltg 22851 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
| 17 | 16 | ralbidv 3157 | . . . . 5 ⊢ (𝐵 ∈ V → (∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 18 | 15, 17 | bitrid 283 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 19 | 18 | anbi2d 630 | . . 3 ⊢ (𝐵 ∈ V → ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
| 20 | 14, 19 | bitr4d 282 | . 2 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) |
| 21 | 2, 13, 20 | pm5.21nii 378 | 1 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 class class class wbr 5110 ‘cfv 6514 topGenctg 17407 Fnecfne 36331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topgen 17413 df-fne 36332 |
| This theorem is referenced by: isfne4b 36336 isfne2 36337 isfne3 36338 fnebas 36339 fnetg 36340 topfne 36349 fnemeet1 36361 fnemeet2 36362 fnejoin1 36363 fnejoin2 36364 |
| Copyright terms: Public domain | W3C validator |