Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4 Structured version   Visualization version   GIF version

Theorem isfne4 36358
Description: The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne4 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))

Proof of Theorem isfne4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnerel 36356 . . 3 Rel Fne
21brrelex2i 5711 . 2 (𝐴Fne𝐵𝐵 ∈ V)
3 simpl 482 . . . . 5 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝑋 = 𝑌)
4 isfne.1 . . . . 5 𝑋 = 𝐴
5 isfne.2 . . . . 5 𝑌 = 𝐵
63, 4, 53eqtr3g 2793 . . . 4 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 = 𝐵)
7 fvex 6889 . . . . . . 7 (topGen‘𝐵) ∈ V
87ssex 5291 . . . . . 6 (𝐴 ⊆ (topGen‘𝐵) → 𝐴 ∈ V)
98adantl 481 . . . . 5 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V)
109uniexd 7736 . . . 4 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V)
116, 10eqeltrrd 2835 . . 3 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
12 uniexb 7758 . . 3 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1311, 12sylibr 234 . 2 ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V)
144, 5isfne 36357 . . 3 (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
15 dfss3 3947 . . . . 5 (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵))
16 eltg 22895 . . . . . 6 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1716ralbidv 3163 . . . . 5 (𝐵 ∈ V → (∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1815, 17bitrid 283 . . . 4 (𝐵 ∈ V → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
1918anbi2d 630 . . 3 (𝐵 ∈ V → ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
2014, 19bitr4d 282 . 2 (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵))))
212, 13, 20pm5.21nii 378 1 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883   class class class wbr 5119  cfv 6531  topGenctg 17451  Fnecfne 36354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-topgen 17457  df-fne 36355
This theorem is referenced by:  isfne4b  36359  isfne2  36360  isfne3  36361  fnebas  36362  fnetg  36363  topfne  36372  fnemeet1  36384  fnemeet2  36385  fnejoin1  36386  fnejoin2  36387
  Copyright terms: Public domain W3C validator