| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| isfne4 | ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnerel 36382 | . . 3 ⊢ Rel Fne | |
| 2 | 1 | brrelex2i 5671 | . 2 ⊢ (𝐴Fne𝐵 → 𝐵 ∈ V) |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝑋 = 𝑌) | |
| 4 | isfne.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
| 5 | isfne.2 | . . . . 5 ⊢ 𝑌 = ∪ 𝐵 | |
| 6 | 3, 4, 5 | 3eqtr3g 2789 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 = ∪ 𝐵) |
| 7 | fvex 6835 | . . . . . . 7 ⊢ (topGen‘𝐵) ∈ V | |
| 8 | 7 | ssex 5257 | . . . . . 6 ⊢ (𝐴 ⊆ (topGen‘𝐵) → 𝐴 ∈ V) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V) |
| 10 | 9 | uniexd 7675 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 ∈ V) |
| 11 | 6, 10 | eqeltrrd 2832 | . . 3 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐵 ∈ V) |
| 12 | uniexb 7697 | . . 3 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 13 | 11, 12 | sylibr 234 | . 2 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V) |
| 14 | 4, 5 | isfne 36383 | . . 3 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
| 15 | dfss3 3918 | . . . . 5 ⊢ (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵)) | |
| 16 | eltg 22872 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
| 17 | 16 | ralbidv 3155 | . . . . 5 ⊢ (𝐵 ∈ V → (∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 18 | 15, 17 | bitrid 283 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 19 | 18 | anbi2d 630 | . . 3 ⊢ (𝐵 ∈ V → ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
| 20 | 14, 19 | bitr4d 282 | . 2 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) |
| 21 | 2, 13, 20 | pm5.21nii 378 | 1 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 class class class wbr 5089 ‘cfv 6481 topGenctg 17341 Fnecfne 36380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17347 df-fne 36381 |
| This theorem is referenced by: isfne4b 36385 isfne2 36386 isfne3 36387 fnebas 36388 fnetg 36389 topfne 36398 fnemeet1 36410 fnemeet2 36411 fnejoin1 36412 fnejoin2 36413 |
| Copyright terms: Public domain | W3C validator |