![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4 | Structured version Visualization version GIF version |
Description: The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
isfne4 | ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnerel 36304 | . . 3 ⊢ Rel Fne | |
2 | 1 | brrelex2i 5757 | . 2 ⊢ (𝐴Fne𝐵 → 𝐵 ∈ V) |
3 | simpl 482 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝑋 = 𝑌) | |
4 | isfne.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
5 | isfne.2 | . . . . 5 ⊢ 𝑌 = ∪ 𝐵 | |
6 | 3, 4, 5 | 3eqtr3g 2803 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 = ∪ 𝐵) |
7 | fvex 6933 | . . . . . . 7 ⊢ (topGen‘𝐵) ∈ V | |
8 | 7 | ssex 5339 | . . . . . 6 ⊢ (𝐴 ⊆ (topGen‘𝐵) → 𝐴 ∈ V) |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V) |
10 | 9 | uniexd 7777 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 ∈ V) |
11 | 6, 10 | eqeltrrd 2845 | . . 3 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐵 ∈ V) |
12 | uniexb 7799 | . . 3 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
13 | 11, 12 | sylibr 234 | . 2 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V) |
14 | 4, 5 | isfne 36305 | . . 3 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
15 | dfss3 3997 | . . . . 5 ⊢ (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵)) | |
16 | eltg 22985 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
17 | 16 | ralbidv 3184 | . . . . 5 ⊢ (𝐵 ∈ V → (∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
18 | 15, 17 | bitrid 283 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
19 | 18 | anbi2d 629 | . . 3 ⊢ (𝐵 ∈ V → ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
20 | 14, 19 | bitr4d 282 | . 2 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) |
21 | 2, 13, 20 | pm5.21nii 378 | 1 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ‘cfv 6573 topGenctg 17497 Fnecfne 36302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topgen 17503 df-fne 36303 |
This theorem is referenced by: isfne4b 36307 isfne2 36308 isfne3 36309 fnebas 36310 fnetg 36311 topfne 36320 fnemeet1 36332 fnemeet2 36333 fnejoin1 36334 fnejoin2 36335 |
Copyright terms: Public domain | W3C validator |