Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4 | Structured version Visualization version GIF version |
Description: The predicate "𝐵 is finer than 𝐴 " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
isfne4 | ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnerel 34454 | . . 3 ⊢ Rel Fne | |
2 | 1 | brrelex2i 5635 | . 2 ⊢ (𝐴Fne𝐵 → 𝐵 ∈ V) |
3 | simpl 482 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝑋 = 𝑌) | |
4 | isfne.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
5 | isfne.2 | . . . . 5 ⊢ 𝑌 = ∪ 𝐵 | |
6 | 3, 4, 5 | 3eqtr3g 2802 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 = ∪ 𝐵) |
7 | fvex 6769 | . . . . . . 7 ⊢ (topGen‘𝐵) ∈ V | |
8 | 7 | ssex 5240 | . . . . . 6 ⊢ (𝐴 ⊆ (topGen‘𝐵) → 𝐴 ∈ V) |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐴 ∈ V) |
10 | 9 | uniexd 7573 | . . . 4 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐴 ∈ V) |
11 | 6, 10 | eqeltrrd 2840 | . . 3 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → ∪ 𝐵 ∈ V) |
12 | uniexb 7592 | . . 3 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
13 | 11, 12 | sylibr 233 | . 2 ⊢ ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) → 𝐵 ∈ V) |
14 | 4, 5 | isfne 34455 | . . 3 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
15 | dfss3 3905 | . . . . 5 ⊢ (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵)) | |
16 | eltg 22015 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
17 | 16 | ralbidv 3120 | . . . . 5 ⊢ (𝐵 ∈ V → (∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
18 | 15, 17 | syl5bb 282 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
19 | 18 | anbi2d 628 | . . 3 ⊢ (𝐵 ∈ V → ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)))) |
20 | 14, 19 | bitr4d 281 | . 2 ⊢ (𝐵 ∈ V → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) |
21 | 2, 13, 20 | pm5.21nii 379 | 1 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 ‘cfv 6418 topGenctg 17065 Fnecfne 34452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topgen 17071 df-fne 34453 |
This theorem is referenced by: isfne4b 34457 isfne2 34458 isfne3 34459 fnebas 34460 fnetg 34461 topfne 34470 fnemeet1 34482 fnemeet2 34483 fnejoin1 34484 fnejoin2 34485 |
Copyright terms: Public domain | W3C validator |