Proof of Theorem fneval
Step | Hyp | Ref
| Expression |
1 | | fneval.1 |
. . . 4
⊢ ∼ = (Fne
∩ ◡Fne) |
2 | 1 | breqi 5084 |
. . 3
⊢ (𝐴 ∼ 𝐵 ↔ 𝐴(Fne ∩ ◡Fne)𝐵) |
3 | | brin 5130 |
. . . 4
⊢ (𝐴(Fne ∩ ◡Fne)𝐵 ↔ (𝐴Fne𝐵 ∧ 𝐴◡Fne𝐵)) |
4 | | fnerel 34506 |
. . . . . 6
⊢ Rel
Fne |
5 | 4 | relbrcnv 6012 |
. . . . 5
⊢ (𝐴◡Fne𝐵 ↔ 𝐵Fne𝐴) |
6 | 5 | anbi2i 622 |
. . . 4
⊢ ((𝐴Fne𝐵 ∧ 𝐴◡Fne𝐵) ↔ (𝐴Fne𝐵 ∧ 𝐵Fne𝐴)) |
7 | 3, 6 | bitri 274 |
. . 3
⊢ (𝐴(Fne ∩ ◡Fne)𝐵 ↔ (𝐴Fne𝐵 ∧ 𝐵Fne𝐴)) |
8 | 2, 7 | bitri 274 |
. 2
⊢ (𝐴 ∼ 𝐵 ↔ (𝐴Fne𝐵 ∧ 𝐵Fne𝐴)) |
9 | | eqid 2739 |
. . . . . 6
⊢ ∪ 𝐴 =
∪ 𝐴 |
10 | | eqid 2739 |
. . . . . 6
⊢ ∪ 𝐵 =
∪ 𝐵 |
11 | 9, 10 | isfne4b 34509 |
. . . . 5
⊢ (𝐵 ∈ 𝑊 → (𝐴Fne𝐵 ↔ (∪ 𝐴 = ∪
𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
12 | 10, 9 | isfne4b 34509 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐵Fne𝐴 ↔ (∪ 𝐵 = ∪
𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))) |
13 | | eqcom 2746 |
. . . . . . 7
⊢ (∪ 𝐵 =
∪ 𝐴 ↔ ∪ 𝐴 = ∪
𝐵) |
14 | 13 | anbi1i 623 |
. . . . . 6
⊢ ((∪ 𝐵 =
∪ 𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)) ↔ (∪
𝐴 = ∪ 𝐵
∧ (topGen‘𝐵)
⊆ (topGen‘𝐴))) |
15 | 12, 14 | bitrdi 286 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝐵Fne𝐴 ↔ (∪ 𝐴 = ∪
𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))) |
16 | 11, 15 | bi2anan9r 636 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴Fne𝐵 ∧ 𝐵Fne𝐴) ↔ ((∪
𝐴 = ∪ 𝐵
∧ (topGen‘𝐴)
⊆ (topGen‘𝐵))
∧ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))) |
17 | | eqss 3940 |
. . . . . 6
⊢
((topGen‘𝐴) =
(topGen‘𝐵) ↔
((topGen‘𝐴) ⊆
(topGen‘𝐵) ∧
(topGen‘𝐵) ⊆
(topGen‘𝐴))) |
18 | 17 | anbi2i 622 |
. . . . 5
⊢ ((∪ 𝐴 =
∪ 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ (∪
𝐴 = ∪ 𝐵
∧ ((topGen‘𝐴)
⊆ (topGen‘𝐵)
∧ (topGen‘𝐵)
⊆ (topGen‘𝐴)))) |
19 | | anandi 672 |
. . . . 5
⊢ ((∪ 𝐴 =
∪ 𝐵 ∧ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))) ↔ ((∪
𝐴 = ∪ 𝐵
∧ (topGen‘𝐴)
⊆ (topGen‘𝐵))
∧ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))) |
20 | 18, 19 | bitri 274 |
. . . 4
⊢ ((∪ 𝐴 =
∪ 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ ((∪
𝐴 = ∪ 𝐵
∧ (topGen‘𝐴)
⊆ (topGen‘𝐵))
∧ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))) |
21 | 16, 20 | bitr4di 288 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴Fne𝐵 ∧ 𝐵Fne𝐴) ↔ (∪ 𝐴 = ∪
𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)))) |
22 | | unieq 4855 |
. . . . 5
⊢
((topGen‘𝐴) =
(topGen‘𝐵) →
∪ (topGen‘𝐴) = ∪
(topGen‘𝐵)) |
23 | | unitg 22098 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ∪
(topGen‘𝐴) = ∪ 𝐴) |
24 | | unitg 22098 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → ∪
(topGen‘𝐵) = ∪ 𝐵) |
25 | 23, 24 | eqeqan12d 2753 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∪
(topGen‘𝐴) = ∪ (topGen‘𝐵) ↔ ∪ 𝐴 = ∪
𝐵)) |
26 | 22, 25 | syl5ib 243 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) → ∪ 𝐴 = ∪
𝐵)) |
27 | 26 | pm4.71rd 562 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) ↔ (∪ 𝐴 = ∪
𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)))) |
28 | 21, 27 | bitr4d 281 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴Fne𝐵 ∧ 𝐵Fne𝐴) ↔ (topGen‘𝐴) = (topGen‘𝐵))) |
29 | 8, 28 | syl5bb 282 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∼ 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵))) |