Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneval Structured version   Visualization version   GIF version

Theorem fneval 34520
Description: Two covers are finer than each other iff they are both bases for the same topology. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fneval.1 = (Fne ∩ Fne)
Assertion
Ref Expression
fneval ((𝐴𝑉𝐵𝑊) → (𝐴 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵)))

Proof of Theorem fneval
StepHypRef Expression
1 fneval.1 . . . 4 = (Fne ∩ Fne)
21breqi 5084 . . 3 (𝐴 𝐵𝐴(Fne ∩ Fne)𝐵)
3 brin 5130 . . . 4 (𝐴(Fne ∩ Fne)𝐵 ↔ (𝐴Fne𝐵𝐴Fne𝐵))
4 fnerel 34506 . . . . . 6 Rel Fne
54relbrcnv 6012 . . . . 5 (𝐴Fne𝐵𝐵Fne𝐴)
65anbi2i 622 . . . 4 ((𝐴Fne𝐵𝐴Fne𝐵) ↔ (𝐴Fne𝐵𝐵Fne𝐴))
73, 6bitri 274 . . 3 (𝐴(Fne ∩ Fne)𝐵 ↔ (𝐴Fne𝐵𝐵Fne𝐴))
82, 7bitri 274 . 2 (𝐴 𝐵 ↔ (𝐴Fne𝐵𝐵Fne𝐴))
9 eqid 2739 . . . . . 6 𝐴 = 𝐴
10 eqid 2739 . . . . . 6 𝐵 = 𝐵
119, 10isfne4b 34509 . . . . 5 (𝐵𝑊 → (𝐴Fne𝐵 ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
1210, 9isfne4b 34509 . . . . . 6 (𝐴𝑉 → (𝐵Fne𝐴 ↔ ( 𝐵 = 𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
13 eqcom 2746 . . . . . . 7 ( 𝐵 = 𝐴 𝐴 = 𝐵)
1413anbi1i 623 . . . . . 6 (( 𝐵 = 𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))
1512, 14bitrdi 286 . . . . 5 (𝐴𝑉 → (𝐵Fne𝐴 ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
1611, 15bi2anan9r 636 . . . 4 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))))
17 eqss 3940 . . . . . 6 ((topGen‘𝐴) = (topGen‘𝐵) ↔ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))
1817anbi2i 622 . . . . 5 (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ ( 𝐴 = 𝐵 ∧ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
19 anandi 672 . . . . 5 (( 𝐴 = 𝐵 ∧ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
2018, 19bitri 274 . . . 4 (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
2116, 20bitr4di 288 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵))))
22 unieq 4855 . . . . 5 ((topGen‘𝐴) = (topGen‘𝐵) → (topGen‘𝐴) = (topGen‘𝐵))
23 unitg 22098 . . . . . 6 (𝐴𝑉 (topGen‘𝐴) = 𝐴)
24 unitg 22098 . . . . . 6 (𝐵𝑊 (topGen‘𝐵) = 𝐵)
2523, 24eqeqan12d 2753 . . . . 5 ((𝐴𝑉𝐵𝑊) → ( (topGen‘𝐴) = (topGen‘𝐵) ↔ 𝐴 = 𝐵))
2622, 25syl5ib 243 . . . 4 ((𝐴𝑉𝐵𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) → 𝐴 = 𝐵))
2726pm4.71rd 562 . . 3 ((𝐴𝑉𝐵𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵))))
2821, 27bitr4d 281 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ (topGen‘𝐴) = (topGen‘𝐵)))
298, 28syl5bb 282 1 ((𝐴𝑉𝐵𝑊) → (𝐴 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  cin 3890  wss 3891   cuni 4844   class class class wbr 5078  ccnv 5587  cfv 6430  topGenctg 17129  Fnecfne 34504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-topgen 17135  df-fne 34505
This theorem is referenced by:  fneer  34521  topfneec  34523  topfneec2  34524
  Copyright terms: Public domain W3C validator