Proof of Theorem fneval
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fneval.1 | . . . 4
⊢  ∼ = (Fne
∩ ◡Fne) | 
| 2 | 1 | breqi 5148 | . . 3
⊢ (𝐴 ∼ 𝐵 ↔ 𝐴(Fne ∩ ◡Fne)𝐵) | 
| 3 |  | brin 5194 | . . . 4
⊢ (𝐴(Fne ∩ ◡Fne)𝐵 ↔ (𝐴Fne𝐵 ∧ 𝐴◡Fne𝐵)) | 
| 4 |  | fnerel 36340 | . . . . . 6
⊢ Rel
Fne | 
| 5 | 4 | relbrcnv 6124 | . . . . 5
⊢ (𝐴◡Fne𝐵 ↔ 𝐵Fne𝐴) | 
| 6 | 5 | anbi2i 623 | . . . 4
⊢ ((𝐴Fne𝐵 ∧ 𝐴◡Fne𝐵) ↔ (𝐴Fne𝐵 ∧ 𝐵Fne𝐴)) | 
| 7 | 3, 6 | bitri 275 | . . 3
⊢ (𝐴(Fne ∩ ◡Fne)𝐵 ↔ (𝐴Fne𝐵 ∧ 𝐵Fne𝐴)) | 
| 8 | 2, 7 | bitri 275 | . 2
⊢ (𝐴 ∼ 𝐵 ↔ (𝐴Fne𝐵 ∧ 𝐵Fne𝐴)) | 
| 9 |  | eqid 2736 | . . . . . 6
⊢ ∪ 𝐴 =
∪ 𝐴 | 
| 10 |  | eqid 2736 | . . . . . 6
⊢ ∪ 𝐵 =
∪ 𝐵 | 
| 11 | 9, 10 | isfne4b 36343 | . . . . 5
⊢ (𝐵 ∈ 𝑊 → (𝐴Fne𝐵 ↔ (∪ 𝐴 = ∪
𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) | 
| 12 | 10, 9 | isfne4b 36343 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐵Fne𝐴 ↔ (∪ 𝐵 = ∪
𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))) | 
| 13 |  | eqcom 2743 | . . . . . . 7
⊢ (∪ 𝐵 =
∪ 𝐴 ↔ ∪ 𝐴 = ∪
𝐵) | 
| 14 | 13 | anbi1i 624 | . . . . . 6
⊢ ((∪ 𝐵 =
∪ 𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)) ↔ (∪
𝐴 = ∪ 𝐵
∧ (topGen‘𝐵)
⊆ (topGen‘𝐴))) | 
| 15 | 12, 14 | bitrdi 287 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝐵Fne𝐴 ↔ (∪ 𝐴 = ∪
𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))) | 
| 16 | 11, 15 | bi2anan9r 639 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴Fne𝐵 ∧ 𝐵Fne𝐴) ↔ ((∪
𝐴 = ∪ 𝐵
∧ (topGen‘𝐴)
⊆ (topGen‘𝐵))
∧ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))) | 
| 17 |  | eqss 3998 | . . . . . 6
⊢
((topGen‘𝐴) =
(topGen‘𝐵) ↔
((topGen‘𝐴) ⊆
(topGen‘𝐵) ∧
(topGen‘𝐵) ⊆
(topGen‘𝐴))) | 
| 18 | 17 | anbi2i 623 | . . . . 5
⊢ ((∪ 𝐴 =
∪ 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ (∪
𝐴 = ∪ 𝐵
∧ ((topGen‘𝐴)
⊆ (topGen‘𝐵)
∧ (topGen‘𝐵)
⊆ (topGen‘𝐴)))) | 
| 19 |  | anandi 676 | . . . . 5
⊢ ((∪ 𝐴 =
∪ 𝐵 ∧ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))) ↔ ((∪
𝐴 = ∪ 𝐵
∧ (topGen‘𝐴)
⊆ (topGen‘𝐵))
∧ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))) | 
| 20 | 18, 19 | bitri 275 | . . . 4
⊢ ((∪ 𝐴 =
∪ 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ ((∪
𝐴 = ∪ 𝐵
∧ (topGen‘𝐴)
⊆ (topGen‘𝐵))
∧ (∪ 𝐴 = ∪ 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))) | 
| 21 | 16, 20 | bitr4di 289 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴Fne𝐵 ∧ 𝐵Fne𝐴) ↔ (∪ 𝐴 = ∪
𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)))) | 
| 22 |  | unieq 4917 | . . . . 5
⊢
((topGen‘𝐴) =
(topGen‘𝐵) →
∪ (topGen‘𝐴) = ∪
(topGen‘𝐵)) | 
| 23 |  | unitg 22975 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → ∪
(topGen‘𝐴) = ∪ 𝐴) | 
| 24 |  | unitg 22975 | . . . . . 6
⊢ (𝐵 ∈ 𝑊 → ∪
(topGen‘𝐵) = ∪ 𝐵) | 
| 25 | 23, 24 | eqeqan12d 2750 | . . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∪
(topGen‘𝐴) = ∪ (topGen‘𝐵) ↔ ∪ 𝐴 = ∪
𝐵)) | 
| 26 | 22, 25 | imbitrid 244 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) → ∪ 𝐴 = ∪
𝐵)) | 
| 27 | 26 | pm4.71rd 562 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) ↔ (∪ 𝐴 = ∪
𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)))) | 
| 28 | 21, 27 | bitr4d 282 | . 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴Fne𝐵 ∧ 𝐵Fne𝐴) ↔ (topGen‘𝐴) = (topGen‘𝐵))) | 
| 29 | 8, 28 | bitrid 283 | 1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∼ 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵))) |