Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneval Structured version   Visualization version   GIF version

Theorem fneval 34586
Description: Two covers are finer than each other iff they are both bases for the same topology. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fneval.1 = (Fne ∩ Fne)
Assertion
Ref Expression
fneval ((𝐴𝑉𝐵𝑊) → (𝐴 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵)))

Proof of Theorem fneval
StepHypRef Expression
1 fneval.1 . . . 4 = (Fne ∩ Fne)
21breqi 5087 . . 3 (𝐴 𝐵𝐴(Fne ∩ Fne)𝐵)
3 brin 5133 . . . 4 (𝐴(Fne ∩ Fne)𝐵 ↔ (𝐴Fne𝐵𝐴Fne𝐵))
4 fnerel 34572 . . . . . 6 Rel Fne
54relbrcnv 6025 . . . . 5 (𝐴Fne𝐵𝐵Fne𝐴)
65anbi2i 624 . . . 4 ((𝐴Fne𝐵𝐴Fne𝐵) ↔ (𝐴Fne𝐵𝐵Fne𝐴))
73, 6bitri 275 . . 3 (𝐴(Fne ∩ Fne)𝐵 ↔ (𝐴Fne𝐵𝐵Fne𝐴))
82, 7bitri 275 . 2 (𝐴 𝐵 ↔ (𝐴Fne𝐵𝐵Fne𝐴))
9 eqid 2736 . . . . . 6 𝐴 = 𝐴
10 eqid 2736 . . . . . 6 𝐵 = 𝐵
119, 10isfne4b 34575 . . . . 5 (𝐵𝑊 → (𝐴Fne𝐵 ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
1210, 9isfne4b 34575 . . . . . 6 (𝐴𝑉 → (𝐵Fne𝐴 ↔ ( 𝐵 = 𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
13 eqcom 2743 . . . . . . 7 ( 𝐵 = 𝐴 𝐴 = 𝐵)
1413anbi1i 625 . . . . . 6 (( 𝐵 = 𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))
1512, 14bitrdi 287 . . . . 5 (𝐴𝑉 → (𝐵Fne𝐴 ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
1611, 15bi2anan9r 638 . . . 4 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))))
17 eqss 3941 . . . . . 6 ((topGen‘𝐴) = (topGen‘𝐵) ↔ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))
1817anbi2i 624 . . . . 5 (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ ( 𝐴 = 𝐵 ∧ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
19 anandi 674 . . . . 5 (( 𝐴 = 𝐵 ∧ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
2018, 19bitri 275 . . . 4 (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
2116, 20bitr4di 289 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵))))
22 unieq 4855 . . . . 5 ((topGen‘𝐴) = (topGen‘𝐵) → (topGen‘𝐴) = (topGen‘𝐵))
23 unitg 22162 . . . . . 6 (𝐴𝑉 (topGen‘𝐴) = 𝐴)
24 unitg 22162 . . . . . 6 (𝐵𝑊 (topGen‘𝐵) = 𝐵)
2523, 24eqeqan12d 2750 . . . . 5 ((𝐴𝑉𝐵𝑊) → ( (topGen‘𝐴) = (topGen‘𝐵) ↔ 𝐴 = 𝐵))
2622, 25syl5ib 244 . . . 4 ((𝐴𝑉𝐵𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) → 𝐴 = 𝐵))
2726pm4.71rd 564 . . 3 ((𝐴𝑉𝐵𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵))))
2821, 27bitr4d 282 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ (topGen‘𝐴) = (topGen‘𝐵)))
298, 28bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝐴 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  cin 3891  wss 3892   cuni 4844   class class class wbr 5081  ccnv 5599  cfv 6458  topGenctg 17193  Fnecfne 34570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-topgen 17199  df-fne 34571
This theorem is referenced by:  fneer  34587  topfneec  34589  topfneec2  34590
  Copyright terms: Public domain W3C validator