Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege72 | Structured version Visualization version GIF version |
Description: If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege72.x | ⊢ 𝑋 ∈ 𝑈 |
frege72.y | ⊢ 𝑌 ∈ 𝑉 |
Ref | Expression |
---|---|
frege72 | ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege72.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
2 | 1 | frege58c 41030 | . . 3 ⊢ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → [𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴)) |
3 | sbcim1 3751 | . . . 4 ⊢ ([𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → ([𝑌 / 𝑧]𝑋𝑅𝑧 → [𝑌 / 𝑧]𝑧 ∈ 𝐴)) | |
4 | sbcbr2g 5094 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅⦋𝑌 / 𝑧⦌𝑧)) | |
5 | csbvarg 4331 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑧⦌𝑧 = 𝑌) | |
6 | 5 | breq2d 5048 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (𝑋𝑅⦋𝑌 / 𝑧⦌𝑧 ↔ 𝑋𝑅𝑌)) |
7 | 4, 6 | bitrd 282 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅𝑌)) |
8 | 1, 7 | ax-mp 5 | . . . 4 ⊢ ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅𝑌) |
9 | sbcel1v 3765 | . . . 4 ⊢ ([𝑌 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴) | |
10 | 3, 8, 9 | 3imtr3g 298 | . . 3 ⊢ ([𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) |
11 | 2, 10 | syl 17 | . 2 ⊢ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) |
12 | frege72.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
13 | 12 | frege71 41043 | . 2 ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) |
14 | 11, 13 | ax-mp 5 | 1 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 ∈ wcel 2111 [wsbc 3698 ⦋csb 3807 class class class wbr 5036 hereditary whe 40881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-frege1 40899 ax-frege2 40900 ax-frege8 40918 ax-frege52a 40966 ax-frege58b 41010 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-xp 5534 df-cnv 5536 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-he 40882 |
This theorem is referenced by: frege73 41045 frege74 41046 |
Copyright terms: Public domain | W3C validator |