![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege72 | Structured version Visualization version GIF version |
Description: If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege72.x | ⊢ 𝑋 ∈ 𝑈 |
frege72.y | ⊢ 𝑌 ∈ 𝑉 |
Ref | Expression |
---|---|
frege72 | ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege72.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
2 | 1 | frege58c 42267 | . . 3 ⊢ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → [𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴)) |
3 | sbcim1 3800 | . . . 4 ⊢ ([𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → ([𝑌 / 𝑧]𝑋𝑅𝑧 → [𝑌 / 𝑧]𝑧 ∈ 𝐴)) | |
4 | sbcbr2g 5168 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅⦋𝑌 / 𝑧⦌𝑧)) | |
5 | csbvarg 4396 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑧⦌𝑧 = 𝑌) | |
6 | 5 | breq2d 5122 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (𝑋𝑅⦋𝑌 / 𝑧⦌𝑧 ↔ 𝑋𝑅𝑌)) |
7 | 4, 6 | bitrd 279 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅𝑌)) |
8 | 1, 7 | ax-mp 5 | . . . 4 ⊢ ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅𝑌) |
9 | sbcel1v 3815 | . . . 4 ⊢ ([𝑌 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴) | |
10 | 3, 8, 9 | 3imtr3g 295 | . . 3 ⊢ ([𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) |
11 | 2, 10 | syl 17 | . 2 ⊢ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) |
12 | frege72.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
13 | 12 | frege71 42280 | . 2 ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) |
14 | 11, 13 | ax-mp 5 | 1 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∈ wcel 2107 [wsbc 3744 ⦋csb 3860 class class class wbr 5110 hereditary whe 42118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-frege1 42136 ax-frege2 42137 ax-frege8 42155 ax-frege52a 42203 ax-frege58b 42247 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-he 42119 |
This theorem is referenced by: frege73 42282 frege74 42283 |
Copyright terms: Public domain | W3C validator |