Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege72 Structured version   Visualization version   GIF version

Theorem frege72 43931
Description: If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege72.x 𝑋𝑈
frege72.y 𝑌𝑉
Assertion
Ref Expression
frege72 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))

Proof of Theorem frege72
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frege72.y . . . 4 𝑌𝑉
21frege58c 43917 . . 3 (∀𝑧(𝑋𝑅𝑧𝑧𝐴) → [𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴))
3 sbcim1 3810 . . . 4 ([𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴) → ([𝑌 / 𝑧]𝑋𝑅𝑧[𝑌 / 𝑧]𝑧𝐴))
4 sbcbr2g 5168 . . . . . 6 (𝑌𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌 / 𝑧𝑧))
5 csbvarg 4400 . . . . . . 7 (𝑌𝑉𝑌 / 𝑧𝑧 = 𝑌)
65breq2d 5122 . . . . . 6 (𝑌𝑉 → (𝑋𝑅𝑌 / 𝑧𝑧𝑋𝑅𝑌))
74, 6bitrd 279 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌))
81, 7ax-mp 5 . . . 4 ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌)
9 sbcel1v 3822 . . . 4 ([𝑌 / 𝑧]𝑧𝐴𝑌𝐴)
103, 8, 93imtr3g 295 . . 3 ([𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴))
112, 10syl 17 . 2 (∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴))
12 frege72.x . . 3 𝑋𝑈
1312frege71 43930 . 2 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
1411, 13ax-mp 5 1 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  [wsbc 3756  csb 3865   class class class wbr 5110   hereditary whe 43768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-frege1 43786  ax-frege2 43787  ax-frege8 43805  ax-frege52a 43853  ax-frege58b 43897
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-he 43769
This theorem is referenced by:  frege73  43932  frege74  43933
  Copyright terms: Public domain W3C validator