| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege72 | Structured version Visualization version GIF version | ||
| Description: If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege72.x | ⊢ 𝑋 ∈ 𝑈 |
| frege72.y | ⊢ 𝑌 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege72 | ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege72.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
| 2 | 1 | frege58c 43911 | . . 3 ⊢ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → [𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴)) |
| 3 | sbcim1 3824 | . . . 4 ⊢ ([𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → ([𝑌 / 𝑧]𝑋𝑅𝑧 → [𝑌 / 𝑧]𝑧 ∈ 𝐴)) | |
| 4 | sbcbr2g 5181 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅⦋𝑌 / 𝑧⦌𝑧)) | |
| 5 | csbvarg 4414 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑧⦌𝑧 = 𝑌) | |
| 6 | 5 | breq2d 5135 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (𝑋𝑅⦋𝑌 / 𝑧⦌𝑧 ↔ 𝑋𝑅𝑌)) |
| 7 | 4, 6 | bitrd 279 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅𝑌)) |
| 8 | 1, 7 | ax-mp 5 | . . . 4 ⊢ ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅𝑌) |
| 9 | sbcel1v 3836 | . . . 4 ⊢ ([𝑌 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴) | |
| 10 | 3, 8, 9 | 3imtr3g 295 | . . 3 ⊢ ([𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) |
| 12 | frege72.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
| 13 | 12 | frege71 43924 | . 2 ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) |
| 14 | 11, 13 | ax-mp 5 | 1 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∈ wcel 2107 [wsbc 3770 ⦋csb 3879 class class class wbr 5123 hereditary whe 43762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-frege1 43780 ax-frege2 43781 ax-frege8 43799 ax-frege52a 43847 ax-frege58b 43891 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-he 43763 |
| This theorem is referenced by: frege73 43926 frege74 43927 |
| Copyright terms: Public domain | W3C validator |