Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege72 Structured version   Visualization version   GIF version

Theorem frege72 43918
Description: If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege72.x 𝑋𝑈
frege72.y 𝑌𝑉
Assertion
Ref Expression
frege72 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))

Proof of Theorem frege72
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frege72.y . . . 4 𝑌𝑉
21frege58c 43904 . . 3 (∀𝑧(𝑋𝑅𝑧𝑧𝐴) → [𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴))
3 sbcim1 3796 . . . 4 ([𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴) → ([𝑌 / 𝑧]𝑋𝑅𝑧[𝑌 / 𝑧]𝑧𝐴))
4 sbcbr2g 5150 . . . . . 6 (𝑌𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌 / 𝑧𝑧))
5 csbvarg 4385 . . . . . . 7 (𝑌𝑉𝑌 / 𝑧𝑧 = 𝑌)
65breq2d 5104 . . . . . 6 (𝑌𝑉 → (𝑋𝑅𝑌 / 𝑧𝑧𝑋𝑅𝑌))
74, 6bitrd 279 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌))
81, 7ax-mp 5 . . . 4 ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌)
9 sbcel1v 3808 . . . 4 ([𝑌 / 𝑧]𝑧𝐴𝑌𝐴)
103, 8, 93imtr3g 295 . . 3 ([𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴))
112, 10syl 17 . 2 (∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴))
12 frege72.x . . 3 𝑋𝑈
1312frege71 43917 . 2 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
1411, 13ax-mp 5 1 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  [wsbc 3742  csb 3851   class class class wbr 5092   hereditary whe 43755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-frege1 43773  ax-frege2 43774  ax-frege8 43792  ax-frege52a 43840  ax-frege58b 43884
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-he 43756
This theorem is referenced by:  frege73  43919  frege74  43920
  Copyright terms: Public domain W3C validator