Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege118 Structured version   Visualization version   GIF version

Theorem frege118 41570
Description: Simplified application of one direction of dffrege115 41567. Proposition 118 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
Assertion
Ref Expression
frege118 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑉(𝑎)

Proof of Theorem frege118
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 frege118.y . . . 4 𝑌𝑉
21frege58c 41510 . . 3 (∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → [𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
3 sbcimg 3766 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋))))
41, 3ax-mp 5 . . . 4 ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
5 sbcbr1g 5130 . . . . . . 7 (𝑌𝑉 → ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌 / 𝑏𝑏𝑅𝑋))
61, 5ax-mp 5 . . . . . 6 ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌 / 𝑏𝑏𝑅𝑋)
7 csbvarg 4365 . . . . . . . 8 (𝑌𝑉𝑌 / 𝑏𝑏 = 𝑌)
81, 7ax-mp 5 . . . . . . 7 𝑌 / 𝑏𝑏 = 𝑌
98breq1i 5080 . . . . . 6 (𝑌 / 𝑏𝑏𝑅𝑋𝑌𝑅𝑋)
106, 9bitri 274 . . . . 5 ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌𝑅𝑋)
11 sbcal 3779 . . . . . 6 ([𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎[𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋))
12 sbcimg 3766 . . . . . . . . 9 (𝑌𝑉 → ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋)))
131, 12ax-mp 5 . . . . . . . 8 ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋))
14 sbcbr1g 5130 . . . . . . . . . . 11 (𝑌𝑉 → ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌 / 𝑏𝑏𝑅𝑎))
151, 14ax-mp 5 . . . . . . . . . 10 ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌 / 𝑏𝑏𝑅𝑎)
168breq1i 5080 . . . . . . . . . 10 (𝑌 / 𝑏𝑏𝑅𝑎𝑌𝑅𝑎)
1715, 16bitri 274 . . . . . . . . 9 ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌𝑅𝑎)
18 sbcg 3794 . . . . . . . . . 10 (𝑌𝑉 → ([𝑌 / 𝑏]𝑎 = 𝑋𝑎 = 𝑋))
191, 18ax-mp 5 . . . . . . . . 9 ([𝑌 / 𝑏]𝑎 = 𝑋𝑎 = 𝑋)
2017, 19imbi12i 351 . . . . . . . 8 (([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋) ↔ (𝑌𝑅𝑎𝑎 = 𝑋))
2113, 20bitri 274 . . . . . . 7 ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ (𝑌𝑅𝑎𝑎 = 𝑋))
2221albii 1822 . . . . . 6 (∀𝑎[𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))
2311, 22bitri 274 . . . . 5 ([𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))
2410, 23imbi12i 351 . . . 4 (([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
254, 24bitri 274 . . 3 ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
262, 25sylib 217 . 2 (∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
27 frege116.x . . 3 𝑋𝑈
2827frege117 41569 . 2 ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))) → (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))))
2926, 28ax-mp 5 1 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2106  [wsbc 3715  csb 3831   class class class wbr 5073  ccnv 5583  Fun wfun 6420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-frege1 41379  ax-frege2 41380  ax-frege8 41398  ax-frege52a 41446  ax-frege58b 41490
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5074  df-opab 5136  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-fun 6428
This theorem is referenced by:  frege119  41571
  Copyright terms: Public domain W3C validator