Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege118 Structured version   Visualization version   GIF version

Theorem frege118 43977
Description: Simplified application of one direction of dffrege115 43974. Proposition 118 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
Assertion
Ref Expression
frege118 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑉(𝑎)

Proof of Theorem frege118
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 frege118.y . . . 4 𝑌𝑉
21frege58c 43917 . . 3 (∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → [𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
3 sbcimg 3805 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋))))
41, 3ax-mp 5 . . . 4 ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
5 sbcbr1g 5167 . . . . . . 7 (𝑌𝑉 → ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌 / 𝑏𝑏𝑅𝑋))
61, 5ax-mp 5 . . . . . 6 ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌 / 𝑏𝑏𝑅𝑋)
7 csbvarg 4400 . . . . . . . 8 (𝑌𝑉𝑌 / 𝑏𝑏 = 𝑌)
81, 7ax-mp 5 . . . . . . 7 𝑌 / 𝑏𝑏 = 𝑌
98breq1i 5117 . . . . . 6 (𝑌 / 𝑏𝑏𝑅𝑋𝑌𝑅𝑋)
106, 9bitri 275 . . . . 5 ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌𝑅𝑋)
11 sbcal 3816 . . . . . 6 ([𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎[𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋))
12 sbcimg 3805 . . . . . . . . 9 (𝑌𝑉 → ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋)))
131, 12ax-mp 5 . . . . . . . 8 ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋))
14 sbcbr1g 5167 . . . . . . . . . . 11 (𝑌𝑉 → ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌 / 𝑏𝑏𝑅𝑎))
151, 14ax-mp 5 . . . . . . . . . 10 ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌 / 𝑏𝑏𝑅𝑎)
168breq1i 5117 . . . . . . . . . 10 (𝑌 / 𝑏𝑏𝑅𝑎𝑌𝑅𝑎)
1715, 16bitri 275 . . . . . . . . 9 ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌𝑅𝑎)
18 sbcg 3829 . . . . . . . . . 10 (𝑌𝑉 → ([𝑌 / 𝑏]𝑎 = 𝑋𝑎 = 𝑋))
191, 18ax-mp 5 . . . . . . . . 9 ([𝑌 / 𝑏]𝑎 = 𝑋𝑎 = 𝑋)
2017, 19imbi12i 350 . . . . . . . 8 (([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋) ↔ (𝑌𝑅𝑎𝑎 = 𝑋))
2113, 20bitri 275 . . . . . . 7 ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ (𝑌𝑅𝑎𝑎 = 𝑋))
2221albii 1819 . . . . . 6 (∀𝑎[𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))
2311, 22bitri 275 . . . . 5 ([𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))
2410, 23imbi12i 350 . . . 4 (([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
254, 24bitri 275 . . 3 ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
262, 25sylib 218 . 2 (∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
27 frege116.x . . 3 𝑋𝑈
2827frege117 43976 . 2 ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))) → (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))))
2926, 28ax-mp 5 1 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  [wsbc 3756  csb 3865   class class class wbr 5110  ccnv 5640  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-frege1 43786  ax-frege2 43787  ax-frege8 43805  ax-frege52a 43853  ax-frege58b 43897
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-fun 6516
This theorem is referenced by:  frege119  43978
  Copyright terms: Public domain W3C validator