Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege118 Structured version   Visualization version   GIF version

Theorem frege118 42722
Description: Simplified application of one direction of dffrege115 42719. Proposition 118 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
Assertion
Ref Expression
frege118 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑉(𝑎)

Proof of Theorem frege118
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 frege118.y . . . 4 𝑌𝑉
21frege58c 42662 . . 3 (∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → [𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
3 sbcimg 3828 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋))))
41, 3ax-mp 5 . . . 4 ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
5 sbcbr1g 5205 . . . . . . 7 (𝑌𝑉 → ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌 / 𝑏𝑏𝑅𝑋))
61, 5ax-mp 5 . . . . . 6 ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌 / 𝑏𝑏𝑅𝑋)
7 csbvarg 4431 . . . . . . . 8 (𝑌𝑉𝑌 / 𝑏𝑏 = 𝑌)
81, 7ax-mp 5 . . . . . . 7 𝑌 / 𝑏𝑏 = 𝑌
98breq1i 5155 . . . . . 6 (𝑌 / 𝑏𝑏𝑅𝑋𝑌𝑅𝑋)
106, 9bitri 274 . . . . 5 ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌𝑅𝑋)
11 sbcal 3841 . . . . . 6 ([𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎[𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋))
12 sbcimg 3828 . . . . . . . . 9 (𝑌𝑉 → ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋)))
131, 12ax-mp 5 . . . . . . . 8 ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋))
14 sbcbr1g 5205 . . . . . . . . . . 11 (𝑌𝑉 → ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌 / 𝑏𝑏𝑅𝑎))
151, 14ax-mp 5 . . . . . . . . . 10 ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌 / 𝑏𝑏𝑅𝑎)
168breq1i 5155 . . . . . . . . . 10 (𝑌 / 𝑏𝑏𝑅𝑎𝑌𝑅𝑎)
1715, 16bitri 274 . . . . . . . . 9 ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌𝑅𝑎)
18 sbcg 3856 . . . . . . . . . 10 (𝑌𝑉 → ([𝑌 / 𝑏]𝑎 = 𝑋𝑎 = 𝑋))
191, 18ax-mp 5 . . . . . . . . 9 ([𝑌 / 𝑏]𝑎 = 𝑋𝑎 = 𝑋)
2017, 19imbi12i 350 . . . . . . . 8 (([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋) ↔ (𝑌𝑅𝑎𝑎 = 𝑋))
2113, 20bitri 274 . . . . . . 7 ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ (𝑌𝑅𝑎𝑎 = 𝑋))
2221albii 1821 . . . . . 6 (∀𝑎[𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))
2311, 22bitri 274 . . . . 5 ([𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))
2410, 23imbi12i 350 . . . 4 (([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
254, 24bitri 274 . . 3 ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
262, 25sylib 217 . 2 (∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
27 frege116.x . . 3 𝑋𝑈
2827frege117 42721 . 2 ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))) → (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))))
2926, 28ax-mp 5 1 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wcel 2106  [wsbc 3777  csb 3893   class class class wbr 5148  ccnv 5675  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-frege1 42531  ax-frege2 42532  ax-frege8 42550  ax-frege52a 42598  ax-frege58b 42642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-fun 6545
This theorem is referenced by:  frege119  42723
  Copyright terms: Public domain W3C validator