Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege118 Structured version   Visualization version   GIF version

Theorem frege118 43411
Description: Simplified application of one direction of dffrege115 43408. Proposition 118 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
Assertion
Ref Expression
frege118 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
Distinct variable groups:   𝑅,𝑎   𝑋,𝑎   𝑌,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑉(𝑎)

Proof of Theorem frege118
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 frege118.y . . . 4 𝑌𝑉
21frege58c 43351 . . 3 (∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → [𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
3 sbcimg 3828 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋))))
41, 3ax-mp 5 . . . 4 ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
5 sbcbr1g 5205 . . . . . . 7 (𝑌𝑉 → ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌 / 𝑏𝑏𝑅𝑋))
61, 5ax-mp 5 . . . . . 6 ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌 / 𝑏𝑏𝑅𝑋)
7 csbvarg 4432 . . . . . . . 8 (𝑌𝑉𝑌 / 𝑏𝑏 = 𝑌)
81, 7ax-mp 5 . . . . . . 7 𝑌 / 𝑏𝑏 = 𝑌
98breq1i 5155 . . . . . 6 (𝑌 / 𝑏𝑏𝑅𝑋𝑌𝑅𝑋)
106, 9bitri 275 . . . . 5 ([𝑌 / 𝑏]𝑏𝑅𝑋𝑌𝑅𝑋)
11 sbcal 3840 . . . . . 6 ([𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎[𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋))
12 sbcimg 3828 . . . . . . . . 9 (𝑌𝑉 → ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋)))
131, 12ax-mp 5 . . . . . . . 8 ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋))
14 sbcbr1g 5205 . . . . . . . . . . 11 (𝑌𝑉 → ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌 / 𝑏𝑏𝑅𝑎))
151, 14ax-mp 5 . . . . . . . . . 10 ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌 / 𝑏𝑏𝑅𝑎)
168breq1i 5155 . . . . . . . . . 10 (𝑌 / 𝑏𝑏𝑅𝑎𝑌𝑅𝑎)
1715, 16bitri 275 . . . . . . . . 9 ([𝑌 / 𝑏]𝑏𝑅𝑎𝑌𝑅𝑎)
18 sbcg 3855 . . . . . . . . . 10 (𝑌𝑉 → ([𝑌 / 𝑏]𝑎 = 𝑋𝑎 = 𝑋))
191, 18ax-mp 5 . . . . . . . . 9 ([𝑌 / 𝑏]𝑎 = 𝑋𝑎 = 𝑋)
2017, 19imbi12i 350 . . . . . . . 8 (([𝑌 / 𝑏]𝑏𝑅𝑎[𝑌 / 𝑏]𝑎 = 𝑋) ↔ (𝑌𝑅𝑎𝑎 = 𝑋))
2113, 20bitri 275 . . . . . . 7 ([𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ (𝑌𝑅𝑎𝑎 = 𝑋))
2221albii 1814 . . . . . 6 (∀𝑎[𝑌 / 𝑏](𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))
2311, 22bitri 275 . . . . 5 ([𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋) ↔ ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))
2410, 23imbi12i 350 . . . 4 (([𝑌 / 𝑏]𝑏𝑅𝑋[𝑌 / 𝑏]𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
254, 24bitri 275 . . 3 ([𝑌 / 𝑏](𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) ↔ (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
262, 25sylib 217 . 2 (∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
27 frege116.x . . 3 𝑋𝑈
2827frege117 43410 . 2 ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))) → (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))))
2926, 28ax-mp 5 1 (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wcel 2099  [wsbc 3776  csb 3892   class class class wbr 5148  ccnv 5677  Fun wfun 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-frege1 43220  ax-frege2 43221  ax-frege8 43239  ax-frege52a 43287  ax-frege58b 43331
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-fun 6550
This theorem is referenced by:  frege119  43412
  Copyright terms: Public domain W3C validator