Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege120 Structured version   Visualization version   GIF version

Theorem frege120 41480
Description: Simplified application of one direction of dffrege115 41475. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
frege120.a 𝐴𝑊
Assertion
Ref Expression
frege120 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋)))

Proof of Theorem frege120
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege120.a . . . 4 𝐴𝑊
21frege58c 41418 . . 3 (∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → [𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋))
3 sbcim1 3767 . . . 4 ([𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋) → ([𝐴 / 𝑎]𝑌𝑅𝑎[𝐴 / 𝑎]𝑎 = 𝑋))
4 sbcbr2g 5128 . . . . . 6 (𝐴𝑊 → ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴 / 𝑎𝑎))
51, 4ax-mp 5 . . . . 5 ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴 / 𝑎𝑎)
6 csbvarg 4362 . . . . . . 7 (𝐴𝑊𝐴 / 𝑎𝑎 = 𝐴)
71, 6ax-mp 5 . . . . . 6 𝐴 / 𝑎𝑎 = 𝐴
87breq2i 5078 . . . . 5 (𝑌𝑅𝐴 / 𝑎𝑎𝑌𝑅𝐴)
95, 8bitri 274 . . . 4 ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴)
10 sbceq1g 4345 . . . . . 6 (𝐴𝑊 → ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 / 𝑎𝑎 = 𝑋))
111, 10ax-mp 5 . . . . 5 ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 / 𝑎𝑎 = 𝑋)
127eqeq1i 2743 . . . . 5 (𝐴 / 𝑎𝑎 = 𝑋𝐴 = 𝑋)
1311, 12bitri 274 . . . 4 ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 = 𝑋)
143, 9, 133imtr3g 294 . . 3 ([𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋))
152, 14syl 17 . 2 (∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋))
16 frege116.x . . 3 𝑋𝑈
17 frege118.y . . 3 𝑌𝑉
1816, 17frege119 41479 . 2 ((∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋))))
1915, 18ax-mp 5 1 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  [wsbc 3711  csb 3828   class class class wbr 5070  ccnv 5579  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306  ax-frege52a 41354  ax-frege58b 41398
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-fun 6420
This theorem is referenced by:  frege121  41481
  Copyright terms: Public domain W3C validator