Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege120 | Structured version Visualization version GIF version |
Description: Simplified application of one direction of dffrege115 41052. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege116.x | ⊢ 𝑋 ∈ 𝑈 |
frege118.y | ⊢ 𝑌 ∈ 𝑉 |
frege120.a | ⊢ 𝐴 ∈ 𝑊 |
Ref | Expression |
---|---|
frege120 | ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege120.a | . . . 4 ⊢ 𝐴 ∈ 𝑊 | |
2 | 1 | frege58c 40995 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → [𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋)) |
3 | sbcim1 3749 | . . . 4 ⊢ ([𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋) → ([𝐴 / 𝑎]𝑌𝑅𝑎 → [𝐴 / 𝑎]𝑎 = 𝑋)) | |
4 | sbcbr2g 5090 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅⦋𝐴 / 𝑎⦌𝑎)) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅⦋𝐴 / 𝑎⦌𝑎) |
6 | csbvarg 4328 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → ⦋𝐴 / 𝑎⦌𝑎 = 𝐴) | |
7 | 1, 6 | ax-mp 5 | . . . . . 6 ⊢ ⦋𝐴 / 𝑎⦌𝑎 = 𝐴 |
8 | 7 | breq2i 5040 | . . . . 5 ⊢ (𝑌𝑅⦋𝐴 / 𝑎⦌𝑎 ↔ 𝑌𝑅𝐴) |
9 | 5, 8 | bitri 278 | . . . 4 ⊢ ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅𝐴) |
10 | sbceq1g 4311 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ ⦋𝐴 / 𝑎⦌𝑎 = 𝑋)) | |
11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ ⦋𝐴 / 𝑎⦌𝑎 = 𝑋) |
12 | 7 | eqeq1i 2763 | . . . . 5 ⊢ (⦋𝐴 / 𝑎⦌𝑎 = 𝑋 ↔ 𝐴 = 𝑋) |
13 | 11, 12 | bitri 278 | . . . 4 ⊢ ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ 𝐴 = 𝑋) |
14 | 3, 9, 13 | 3imtr3g 298 | . . 3 ⊢ ([𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) |
15 | 2, 14 | syl 17 | . 2 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) |
16 | frege116.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
17 | frege118.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
18 | 16, 17 | frege119 41056 | . 2 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) |
19 | 15, 18 | ax-mp 5 | 1 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 = wceq 1538 ∈ wcel 2111 [wsbc 3696 ⦋csb 3805 class class class wbr 5032 ◡ccnv 5523 Fun wfun 6329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-frege1 40864 ax-frege2 40865 ax-frege8 40883 ax-frege52a 40931 ax-frege58b 40975 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-fun 6337 |
This theorem is referenced by: frege121 41058 |
Copyright terms: Public domain | W3C validator |