Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege120 Structured version   Visualization version   GIF version

Theorem frege120 41591
Description: Simplified application of one direction of dffrege115 41586. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
frege120.a 𝐴𝑊
Assertion
Ref Expression
frege120 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋)))

Proof of Theorem frege120
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege120.a . . . 4 𝐴𝑊
21frege58c 41529 . . 3 (∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → [𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋))
3 sbcim1 3772 . . . 4 ([𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋) → ([𝐴 / 𝑎]𝑌𝑅𝑎[𝐴 / 𝑎]𝑎 = 𝑋))
4 sbcbr2g 5132 . . . . . 6 (𝐴𝑊 → ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴 / 𝑎𝑎))
51, 4ax-mp 5 . . . . 5 ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴 / 𝑎𝑎)
6 csbvarg 4365 . . . . . . 7 (𝐴𝑊𝐴 / 𝑎𝑎 = 𝐴)
71, 6ax-mp 5 . . . . . 6 𝐴 / 𝑎𝑎 = 𝐴
87breq2i 5082 . . . . 5 (𝑌𝑅𝐴 / 𝑎𝑎𝑌𝑅𝐴)
95, 8bitri 274 . . . 4 ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴)
10 sbceq1g 4348 . . . . . 6 (𝐴𝑊 → ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 / 𝑎𝑎 = 𝑋))
111, 10ax-mp 5 . . . . 5 ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 / 𝑎𝑎 = 𝑋)
127eqeq1i 2743 . . . . 5 (𝐴 / 𝑎𝑎 = 𝑋𝐴 = 𝑋)
1311, 12bitri 274 . . . 4 ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 = 𝑋)
143, 9, 133imtr3g 295 . . 3 ([𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋))
152, 14syl 17 . 2 (∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋))
16 frege116.x . . 3 𝑋𝑈
17 frege118.y . . 3 𝑌𝑉
1816, 17frege119 41590 . 2 ((∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋))))
1915, 18ax-mp 5 1 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2106  [wsbc 3716  csb 3832   class class class wbr 5074  ccnv 5588  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-frege1 41398  ax-frege2 41399  ax-frege8 41417  ax-frege52a 41465  ax-frege58b 41509
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-fun 6435
This theorem is referenced by:  frege121  41592
  Copyright terms: Public domain W3C validator