Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege120 | Structured version Visualization version GIF version |
Description: Simplified application of one direction of dffrege115 41586. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege116.x | ⊢ 𝑋 ∈ 𝑈 |
frege118.y | ⊢ 𝑌 ∈ 𝑉 |
frege120.a | ⊢ 𝐴 ∈ 𝑊 |
Ref | Expression |
---|---|
frege120 | ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege120.a | . . . 4 ⊢ 𝐴 ∈ 𝑊 | |
2 | 1 | frege58c 41529 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → [𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋)) |
3 | sbcim1 3772 | . . . 4 ⊢ ([𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋) → ([𝐴 / 𝑎]𝑌𝑅𝑎 → [𝐴 / 𝑎]𝑎 = 𝑋)) | |
4 | sbcbr2g 5132 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅⦋𝐴 / 𝑎⦌𝑎)) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅⦋𝐴 / 𝑎⦌𝑎) |
6 | csbvarg 4365 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → ⦋𝐴 / 𝑎⦌𝑎 = 𝐴) | |
7 | 1, 6 | ax-mp 5 | . . . . . 6 ⊢ ⦋𝐴 / 𝑎⦌𝑎 = 𝐴 |
8 | 7 | breq2i 5082 | . . . . 5 ⊢ (𝑌𝑅⦋𝐴 / 𝑎⦌𝑎 ↔ 𝑌𝑅𝐴) |
9 | 5, 8 | bitri 274 | . . . 4 ⊢ ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅𝐴) |
10 | sbceq1g 4348 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ ⦋𝐴 / 𝑎⦌𝑎 = 𝑋)) | |
11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ ⦋𝐴 / 𝑎⦌𝑎 = 𝑋) |
12 | 7 | eqeq1i 2743 | . . . . 5 ⊢ (⦋𝐴 / 𝑎⦌𝑎 = 𝑋 ↔ 𝐴 = 𝑋) |
13 | 11, 12 | bitri 274 | . . . 4 ⊢ ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ 𝐴 = 𝑋) |
14 | 3, 9, 13 | 3imtr3g 295 | . . 3 ⊢ ([𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) |
15 | 2, 14 | syl 17 | . 2 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) |
16 | frege116.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
17 | frege118.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
18 | 16, 17 | frege119 41590 | . 2 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) |
19 | 15, 18 | ax-mp 5 | 1 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 [wsbc 3716 ⦋csb 3832 class class class wbr 5074 ◡ccnv 5588 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-frege1 41398 ax-frege2 41399 ax-frege8 41417 ax-frege52a 41465 ax-frege58b 41509 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: frege121 41592 |
Copyright terms: Public domain | W3C validator |