Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege120 Structured version   Visualization version   GIF version

Theorem frege120 41057
 Description: Simplified application of one direction of dffrege115 41052. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
frege120.a 𝐴𝑊
Assertion
Ref Expression
frege120 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋)))

Proof of Theorem frege120
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege120.a . . . 4 𝐴𝑊
21frege58c 40995 . . 3 (∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → [𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋))
3 sbcim1 3749 . . . 4 ([𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋) → ([𝐴 / 𝑎]𝑌𝑅𝑎[𝐴 / 𝑎]𝑎 = 𝑋))
4 sbcbr2g 5090 . . . . . 6 (𝐴𝑊 → ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴 / 𝑎𝑎))
51, 4ax-mp 5 . . . . 5 ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴 / 𝑎𝑎)
6 csbvarg 4328 . . . . . . 7 (𝐴𝑊𝐴 / 𝑎𝑎 = 𝐴)
71, 6ax-mp 5 . . . . . 6 𝐴 / 𝑎𝑎 = 𝐴
87breq2i 5040 . . . . 5 (𝑌𝑅𝐴 / 𝑎𝑎𝑌𝑅𝐴)
95, 8bitri 278 . . . 4 ([𝐴 / 𝑎]𝑌𝑅𝑎𝑌𝑅𝐴)
10 sbceq1g 4311 . . . . . 6 (𝐴𝑊 → ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 / 𝑎𝑎 = 𝑋))
111, 10ax-mp 5 . . . . 5 ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 / 𝑎𝑎 = 𝑋)
127eqeq1i 2763 . . . . 5 (𝐴 / 𝑎𝑎 = 𝑋𝐴 = 𝑋)
1311, 12bitri 278 . . . 4 ([𝐴 / 𝑎]𝑎 = 𝑋𝐴 = 𝑋)
143, 9, 133imtr3g 298 . . 3 ([𝐴 / 𝑎](𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋))
152, 14syl 17 . 2 (∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋))
16 frege116.x . . 3 𝑋𝑈
17 frege118.y . . 3 𝑌𝑉
1816, 17frege119 41056 . 2 ((∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋) → (𝑌𝑅𝐴𝐴 = 𝑋)) → (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋))))
1915, 18ax-mp 5 1 (Fun 𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴𝐴 = 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1536   = wceq 1538   ∈ wcel 2111  [wsbc 3696  ⦋csb 3805   class class class wbr 5032  ◡ccnv 5523  Fun wfun 6329 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-frege1 40864  ax-frege2 40865  ax-frege8 40883  ax-frege52a 40931  ax-frege58b 40975 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-fun 6337 This theorem is referenced by:  frege121  41058
 Copyright terms: Public domain W3C validator