| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege120 | Structured version Visualization version GIF version | ||
| Description: Simplified application of one direction of dffrege115 44002. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege116.x | ⊢ 𝑋 ∈ 𝑈 |
| frege118.y | ⊢ 𝑌 ∈ 𝑉 |
| frege120.a | ⊢ 𝐴 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| frege120 | ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege120.a | . . . 4 ⊢ 𝐴 ∈ 𝑊 | |
| 2 | 1 | frege58c 43945 | . . 3 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → [𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋)) |
| 3 | sbcim1 3819 | . . . 4 ⊢ ([𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋) → ([𝐴 / 𝑎]𝑌𝑅𝑎 → [𝐴 / 𝑎]𝑎 = 𝑋)) | |
| 4 | sbcbr2g 5177 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅⦋𝐴 / 𝑎⦌𝑎)) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅⦋𝐴 / 𝑎⦌𝑎) |
| 6 | csbvarg 4409 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → ⦋𝐴 / 𝑎⦌𝑎 = 𝐴) | |
| 7 | 1, 6 | ax-mp 5 | . . . . . 6 ⊢ ⦋𝐴 / 𝑎⦌𝑎 = 𝐴 |
| 8 | 7 | breq2i 5127 | . . . . 5 ⊢ (𝑌𝑅⦋𝐴 / 𝑎⦌𝑎 ↔ 𝑌𝑅𝐴) |
| 9 | 5, 8 | bitri 275 | . . . 4 ⊢ ([𝐴 / 𝑎]𝑌𝑅𝑎 ↔ 𝑌𝑅𝐴) |
| 10 | sbceq1g 4392 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ ⦋𝐴 / 𝑎⦌𝑎 = 𝑋)) | |
| 11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ ⦋𝐴 / 𝑎⦌𝑎 = 𝑋) |
| 12 | 7 | eqeq1i 2740 | . . . . 5 ⊢ (⦋𝐴 / 𝑎⦌𝑎 = 𝑋 ↔ 𝐴 = 𝑋) |
| 13 | 11, 12 | bitri 275 | . . . 4 ⊢ ([𝐴 / 𝑎]𝑎 = 𝑋 ↔ 𝐴 = 𝑋) |
| 14 | 3, 9, 13 | 3imtr3g 295 | . . 3 ⊢ ([𝐴 / 𝑎](𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) |
| 15 | 2, 14 | syl 17 | . 2 ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) |
| 16 | frege116.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
| 17 | frege118.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
| 18 | 16, 17 | frege119 44006 | . 2 ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) |
| 19 | 15, 18 | ax-mp 5 | 1 ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 [wsbc 3765 ⦋csb 3874 class class class wbr 5119 ◡ccnv 5653 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-frege1 43814 ax-frege2 43815 ax-frege8 43833 ax-frege52a 43881 ax-frege58b 43925 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: frege121 44008 |
| Copyright terms: Public domain | W3C validator |