Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > friOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fri 5548 as of 16-Nov-2024. (Contributed by NM, 18-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
friOLD | ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fr 5543 | . . 3 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥)) | |
2 | sseq1 3950 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | neeq1 3007 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
4 | 2, 3 | anbi12d 630 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅))) |
5 | raleq 3340 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
6 | 5 | rexeqbi1dv 3339 | . . . . 5 ⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
7 | 4, 6 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝐵 → (((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
8 | 7 | spcgv 3533 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥) → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
9 | 1, 8 | syl5bi 241 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝑅 Fr 𝐴 → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
10 | 9 | imp31 417 | 1 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 ⊆ wss 3891 ∅c0 4261 class class class wbr 5078 Fr wfr 5540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-v 3432 df-in 3898 df-ss 3908 df-fr 5543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |