![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > friOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fri 5657 as of 16-Nov-2024. (Contributed by NM, 18-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
friOLD | ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fr 5652 | . . 3 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥)) | |
2 | sseq1 4034 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | neeq1 3009 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
4 | 2, 3 | anbi12d 631 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅))) |
5 | raleq 3331 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
6 | 5 | rexeqbi1dv 3347 | . . . . 5 ⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
7 | 4, 6 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝐵 → (((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
8 | 7 | spcgv 3609 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥) → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
9 | 1, 8 | biimtrid 242 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝑅 Fr 𝐴 → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
10 | 9 | imp31 417 | 1 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 Fr wfr 5649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-fr 5652 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |