| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > friOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of fri 5611 as of 16-Nov-2024. (Contributed by NM, 18-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| friOLD | ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fr 5606 | . . 3 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥)) | |
| 2 | sseq1 3984 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | neeq1 2994 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
| 4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅))) |
| 5 | raleq 3302 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
| 6 | 5 | rexeqbi1dv 3318 | . . . . 5 ⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
| 7 | 4, 6 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝐵 → (((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥) ↔ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
| 8 | 7 | spcgv 3575 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 ¬ 𝑦𝑅𝑥) → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
| 9 | 1, 8 | biimtrid 242 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝑅 Fr 𝐴 → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
| 10 | 9 | imp31 417 | 1 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 Fr wfr 5603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-fr 5606 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |