![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seex | Structured version Visualization version GIF version |
Description: The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.) |
Ref | Expression |
---|---|
seex | ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5653 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V) | |
2 | breq2 5170 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐵)) | |
3 | 2 | rabbidv 3451 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} = {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵}) |
4 | 3 | eleq1d 2829 | . . 3 ⊢ (𝑦 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V)) |
5 | 4 | rspccva 3634 | . 2 ⊢ ((∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
6 | 1, 5 | sylanb 580 | 1 ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 class class class wbr 5166 Se wse 5650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-se 5653 |
This theorem is referenced by: wereu2 5697 setlikespec 6357 frpomin 6372 fnse 8174 ordtypelem10 9596 weiunse 36434 |
Copyright terms: Public domain | W3C validator |