![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seex | Structured version Visualization version GIF version |
Description: The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.) |
Ref | Expression |
---|---|
seex | ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5590 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V) | |
2 | breq2 5110 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐵)) | |
3 | 2 | rabbidv 3416 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} = {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵}) |
4 | 3 | eleq1d 2823 | . . 3 ⊢ (𝑦 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V)) |
5 | 4 | rspccva 3581 | . 2 ⊢ ((∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
6 | 1, 5 | sylanb 582 | 1 ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3065 {crab 3408 Vcvv 3446 class class class wbr 5106 Se wse 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-se 5590 |
This theorem is referenced by: wereu2 5631 setlikespec 6280 frpomin 6295 fnse 8066 ordtypelem10 9464 |
Copyright terms: Public domain | W3C validator |