MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seex Structured version   Visualization version   GIF version

Theorem seex 5488
Description: The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
Assertion
Ref Expression
seex ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem seex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 5485 . 2 (𝑅 Se 𝐴 ↔ ∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V)
2 breq2 5037 . . . . 5 (𝑦 = 𝐵 → (𝑥𝑅𝑦𝑥𝑅𝐵))
32rabbidv 3393 . . . 4 (𝑦 = 𝐵 → {𝑥𝐴𝑥𝑅𝑦} = {𝑥𝐴𝑥𝑅𝐵})
43eleq1d 2837 . . 3 (𝑦 = 𝐵 → ({𝑥𝐴𝑥𝑅𝑦} ∈ V ↔ {𝑥𝐴𝑥𝑅𝐵} ∈ V))
54rspccva 3541 . 2 ((∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V ∧ 𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
61, 5sylanb 585 1 ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  {crab 3075  Vcvv 3410   class class class wbr 5033   Se wse 5482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076  df-rab 3080  df-v 3412  df-un 3864  df-sn 4524  df-pr 4526  df-op 4530  df-br 5034  df-se 5485
This theorem is referenced by:  wereu2  5522  setlikespec  6148  fnse  7833  ordtypelem10  9025  frpomin  33326
  Copyright terms: Public domain W3C validator