|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > seex | Structured version Visualization version GIF version | ||
| Description: The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| seex | ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-se 5637 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V) | |
| 2 | breq2 5146 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐵)) | |
| 3 | 2 | rabbidv 3443 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} = {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵}) | 
| 4 | 3 | eleq1d 2825 | . . 3 ⊢ (𝑦 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V)) | 
| 5 | 4 | rspccva 3620 | . 2 ⊢ ((∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) | 
| 6 | 1, 5 | sylanb 581 | 1 ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 Vcvv 3479 class class class wbr 5142 Se wse 5634 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-se 5637 | 
| This theorem is referenced by: wereu2 5681 setlikespec 6345 frpomin 6360 fnse 8159 ordtypelem10 9568 weiunse 36470 | 
| Copyright terms: Public domain | W3C validator |