MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seex Structured version   Visualization version   GIF version

Theorem seex 5648
Description: The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
Assertion
Ref Expression
seex ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem seex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 5642 . 2 (𝑅 Se 𝐴 ↔ ∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V)
2 breq2 5152 . . . . 5 (𝑦 = 𝐵 → (𝑥𝑅𝑦𝑥𝑅𝐵))
32rabbidv 3441 . . . 4 (𝑦 = 𝐵 → {𝑥𝐴𝑥𝑅𝑦} = {𝑥𝐴𝑥𝑅𝐵})
43eleq1d 2824 . . 3 (𝑦 = 𝐵 → ({𝑥𝐴𝑥𝑅𝑦} ∈ V ↔ {𝑥𝐴𝑥𝑅𝐵} ∈ V))
54rspccva 3621 . 2 ((∀𝑦𝐴 {𝑥𝐴𝑥𝑅𝑦} ∈ V ∧ 𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
61, 5sylanb 581 1 ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478   class class class wbr 5148   Se wse 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-se 5642
This theorem is referenced by:  wereu2  5686  setlikespec  6348  frpomin  6363  fnse  8157  ordtypelem10  9565  weiunse  36451
  Copyright terms: Public domain W3C validator