Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fri | Structured version Visualization version GIF version |
Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.) |
Ref | Expression |
---|---|
fri | ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝑅 Fr 𝐴) | |
2 | simprl 768 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ⊆ 𝐴) | |
3 | simpll 764 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ∈ 𝐶) | |
4 | simprr 770 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ≠ ∅) | |
5 | 1, 2, 3, 4 | frd 5548 | 1 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 Fr wfr 5541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-pw 4535 df-sn 4562 df-fr 5544 |
This theorem is referenced by: frc 5555 fr2nr 5567 frminex 5569 wereu 5585 wereu2 5586 frpomin 6243 fr3nr 7622 frfi 9059 fimax2g 9060 fimin2g 9256 wofib 9304 wemapso 9310 wemapso2lem 9311 noinfep 9418 cflim2 10019 isfin1-3 10142 fin12 10169 fpwwe2lem11 10397 fpwwe2lem12 10398 fpwwe2 10399 bnj110 32838 frinfm 35893 fdc 35903 fnwe2lem2 40876 |
Copyright terms: Public domain | W3C validator |