| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fri | Structured version Visualization version GIF version | ||
| Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.) |
| Ref | Expression |
|---|---|
| fri | ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝑅 Fr 𝐴) | |
| 2 | simprl 770 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ⊆ 𝐴) | |
| 3 | simpll 766 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ∈ 𝐶) | |
| 4 | simprr 772 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ≠ ∅) | |
| 5 | 1, 2, 3, 4 | frd 5580 | 1 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ∅c0 4286 class class class wbr 5095 Fr wfr 5573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-v 3440 df-dif 3908 df-ss 3922 df-pw 4555 df-sn 4580 df-fr 5576 |
| This theorem is referenced by: frc 5586 fr2nr 5600 frminex 5602 wereu 5619 wereu2 5620 frpomin 6292 fr3nr 7712 frfi 9190 fimax2g 9191 fimin2g 9408 wofib 9456 wemapso 9462 wemapso2lem 9463 noinfep 9575 cflim2 10176 isfin1-3 10299 fin12 10326 fpwwe2lem11 10554 fpwwe2lem12 10555 fpwwe2 10556 bnj110 34824 frinfm 37714 fdc 37724 fnwe2lem2 43024 sswfaxreg 44961 |
| Copyright terms: Public domain | W3C validator |