| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fri | Structured version Visualization version GIF version | ||
| Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.) |
| Ref | Expression |
|---|---|
| fri | ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝑅 Fr 𝐴) | |
| 2 | simprl 770 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ⊆ 𝐴) | |
| 3 | simpll 766 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ∈ 𝐶) | |
| 4 | simprr 772 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ≠ ∅) | |
| 5 | 1, 2, 3, 4 | frd 5607 | 1 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ⊆ wss 3924 ∅c0 4306 class class class wbr 5116 Fr wfr 5600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-v 3459 df-dif 3927 df-ss 3941 df-pw 4575 df-sn 4600 df-fr 5603 |
| This theorem is referenced by: frc 5614 fr2nr 5628 frminex 5630 wereu 5647 wereu2 5648 frpomin 6326 fr3nr 7760 frfi 9287 fimax2g 9288 fimin2g 9503 wofib 9551 wemapso 9557 wemapso2lem 9558 noinfep 9666 cflim2 10269 isfin1-3 10392 fin12 10419 fpwwe2lem11 10647 fpwwe2lem12 10648 fpwwe2 10649 bnj110 34810 frinfm 37680 fdc 37690 fnwe2lem2 43000 sswfaxreg 44939 |
| Copyright terms: Public domain | W3C validator |