MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fri Structured version   Visualization version   GIF version

Theorem fri 5581
Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.)
Assertion
Ref Expression
fri (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fri
StepHypRef Expression
1 simplr 768 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Fr 𝐴)
2 simprl 770 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐴)
3 simpll 766 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐶)
4 simprr 772 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵 ≠ ∅)
51, 2, 3, 4frd 5580 1 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905  c0 4286   class class class wbr 5095   Fr wfr 5573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3440  df-dif 3908  df-ss 3922  df-pw 4555  df-sn 4580  df-fr 5576
This theorem is referenced by:  frc  5586  fr2nr  5600  frminex  5602  wereu  5619  wereu2  5620  frpomin  6292  fr3nr  7712  frfi  9190  fimax2g  9191  fimin2g  9408  wofib  9456  wemapso  9462  wemapso2lem  9463  noinfep  9575  cflim2  10176  isfin1-3  10299  fin12  10326  fpwwe2lem11  10554  fpwwe2lem12  10555  fpwwe2  10556  bnj110  34824  frinfm  37714  fdc  37724  fnwe2lem2  43024  sswfaxreg  44961
  Copyright terms: Public domain W3C validator