| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fri | Structured version Visualization version GIF version | ||
| Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.) |
| Ref | Expression |
|---|---|
| fri | ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝑅 Fr 𝐴) | |
| 2 | simprl 770 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ⊆ 𝐴) | |
| 3 | simpll 766 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ∈ 𝐶) | |
| 4 | simprr 772 | . 2 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝐵 ≠ ∅) | |
| 5 | 1, 2, 3, 4 | frd 5595 | 1 ⊢ (((𝐵 ∈ 𝐶 ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 Fr wfr 5588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-v 3449 df-dif 3917 df-ss 3931 df-pw 4565 df-sn 4590 df-fr 5591 |
| This theorem is referenced by: frc 5601 fr2nr 5615 frminex 5617 wereu 5634 wereu2 5635 frpomin 6313 fr3nr 7748 frfi 9232 fimax2g 9233 fimin2g 9450 wofib 9498 wemapso 9504 wemapso2lem 9505 noinfep 9613 cflim2 10216 isfin1-3 10339 fin12 10366 fpwwe2lem11 10594 fpwwe2lem12 10595 fpwwe2 10596 bnj110 34848 frinfm 37729 fdc 37739 fnwe2lem2 43040 sswfaxreg 44977 |
| Copyright terms: Public domain | W3C validator |