MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fri Structured version   Visualization version   GIF version

Theorem fri 5608
Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.)
Assertion
Ref Expression
fri (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fri
StepHypRef Expression
1 simplr 768 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Fr 𝐴)
2 simprl 770 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐴)
3 simpll 766 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐶)
4 simprr 772 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵 ≠ ∅)
51, 2, 3, 4frd 5607 1 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2107  wne 2931  wral 3050  wrex 3059  wss 3924  c0 4306   class class class wbr 5116   Fr wfr 5600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-v 3459  df-dif 3927  df-ss 3941  df-pw 4575  df-sn 4600  df-fr 5603
This theorem is referenced by:  frc  5614  fr2nr  5628  frminex  5630  wereu  5647  wereu2  5648  frpomin  6326  fr3nr  7760  frfi  9287  fimax2g  9288  fimin2g  9503  wofib  9551  wemapso  9557  wemapso2lem  9558  noinfep  9666  cflim2  10269  isfin1-3  10392  fin12  10419  fpwwe2lem11  10647  fpwwe2lem12  10648  fpwwe2  10649  bnj110  34810  frinfm  37680  fdc  37690  fnwe2lem2  43000  sswfaxreg  44939
  Copyright terms: Public domain W3C validator