MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fri Structured version   Visualization version   GIF version

Theorem fri 5596
Description: A nonempty subset of an 𝑅-well-founded class has an 𝑅-minimal element (inference form). (Contributed by BJ, 16-Nov-2024.) (Proof shortened by BJ, 19-Nov-2024.)
Assertion
Ref Expression
fri (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fri
StepHypRef Expression
1 simplr 768 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Fr 𝐴)
2 simprl 770 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐴)
3 simpll 766 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐶)
4 simprr 772 . 2 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵 ≠ ∅)
51, 2, 3, 4frd 5595 1 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   class class class wbr 5107   Fr wfr 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3449  df-dif 3917  df-ss 3931  df-pw 4565  df-sn 4590  df-fr 5591
This theorem is referenced by:  frc  5601  fr2nr  5615  frminex  5617  wereu  5634  wereu2  5635  frpomin  6313  fr3nr  7748  frfi  9232  fimax2g  9233  fimin2g  9450  wofib  9498  wemapso  9504  wemapso2lem  9505  noinfep  9613  cflim2  10216  isfin1-3  10339  fin12  10366  fpwwe2lem11  10594  fpwwe2lem12  10595  fpwwe2  10596  bnj110  34848  frinfm  37729  fdc  37739  fnwe2lem2  43040  sswfaxreg  44977
  Copyright terms: Public domain W3C validator