MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem10 Structured version   Visualization version   GIF version

Theorem frrlem10 8226
Description: Lemma for well-founded recursion. Under the compatibility hypothesis, compute the value of 𝐹 within its domain. (Contributed by Scott Fenton, 6-Dec-2022.)
Hypotheses
Ref Expression
frrlem9.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem9.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem9.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Assertion
Ref Expression
frrlem10 ((𝜑𝑦 ∈ dom 𝐹) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝐵,𝑔,   𝑥,𝐹,𝑢,𝑣   𝜑,𝑓   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔,)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓)   𝑅(𝑣,𝑢,𝑔,)   𝐹(𝑦,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem10
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . . 4 𝑦 ∈ V
21eldm2 5857 . . 3 (𝑦 ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐹)
3 frrlem9.1 . . . . . . . . 9 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem9.2 . . . . . . . . 9 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 8221 . . . . . . . 8 𝐹 = 𝐵
63unieqi 4878 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
75, 6eqtri 2764 . . . . . . 7 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
87eleq2i 2829 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
9 eluniab 4880 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
108, 9bitri 274 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
11 19.8a 2174 . . . . . . . . . . . . . 14 ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
12113ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
13 abid 2717 . . . . . . . . . . . . 13 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
1412, 13sylibr 233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
15 elssuni 4898 . . . . . . . . . . . 12 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1614, 15syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑓 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1716, 7sseqtrrdi 3995 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑓𝐹)
18 simpl23 1253 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
19 simpl3 1193 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → ⟨𝑦, 𝑧⟩ ∈ 𝑓)
20 vex 3449 . . . . . . . . . . . . . . 15 𝑧 ∈ V
211, 20opeldm 5863 . . . . . . . . . . . . . 14 (⟨𝑦, 𝑧⟩ ∈ 𝑓𝑦 ∈ dom 𝑓)
2219, 21syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝑦 ∈ dom 𝑓)
23 simpl21 1251 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝑓 Fn 𝑥)
2423fndmd 6607 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → dom 𝑓 = 𝑥)
2522, 24eleqtrd 2840 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝑦𝑥)
26 rsp 3230 . . . . . . . . . . . 12 (∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑦𝑥 → (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2718, 25, 26sylc 65 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
28 simpl1 1191 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝜑)
29 frrlem9.3 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
303, 4, 29frrlem9 8225 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
3128, 30syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → Fun 𝐹)
32 simpr 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝑓𝐹)
33 funssfv 6863 . . . . . . . . . . . 12 ((Fun 𝐹𝑓𝐹𝑦 ∈ dom 𝑓) → (𝐹𝑦) = (𝑓𝑦))
3431, 32, 22, 33syl3anc 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝐹𝑦) = (𝑓𝑦))
35 simp22r 1293 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)
3635adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)
37 rsp 3230 . . . . . . . . . . . . . . 15 (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥))
3836, 25, 37sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)
3938, 24sseqtrrd 3985 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓)
40 fun2ssres 6546 . . . . . . . . . . . . 13 ((Fun 𝐹𝑓𝐹 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
4131, 32, 39, 40syl3anc 1371 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
4241oveq2d 7373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
4327, 34, 423eqtr4d 2786 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
4417, 43mpdan 685 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
45443exp 1119 . . . . . . . 8 (𝜑 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
4645exlimdv 1936 . . . . . . 7 (𝜑 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
4746impcomd 412 . . . . . 6 (𝜑 → ((⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4847exlimdv 1936 . . . . 5 (𝜑 → (∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4910, 48biimtrid 241 . . . 4 (𝜑 → (⟨𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5049exlimdv 1936 . . 3 (𝜑 → (∃𝑧𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
512, 50biimtrid 241 . 2 (𝜑 → (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5251imp 407 1 ((𝜑𝑦 ∈ dom 𝐹) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wss 3910  cop 4592   cuni 4865   class class class wbr 5105  dom cdm 5633  cres 5635  Predcpred 6252  Fun wfun 6490   Fn wfn 6491  cfv 6496  (class class class)co 7357  frecscfrecs 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-iota 6448  df-fun 6498  df-fn 6499  df-fv 6504  df-ov 7360  df-frecs 8212
This theorem is referenced by:  frrlem12  8228  fpr2a  8233  frr2  9696
  Copyright terms: Public domain W3C validator