MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem10 Structured version   Visualization version   GIF version

Theorem frrlem10 8225
Description: Lemma for well-founded recursion. Under the compatibility hypothesis, compute the value of 𝐹 within its domain. (Contributed by Scott Fenton, 6-Dec-2022.)
Hypotheses
Ref Expression
frrlem9.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem9.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem9.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Assertion
Ref Expression
frrlem10 ((𝜑𝑦 ∈ dom 𝐹) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝐵,𝑔,   𝑥,𝐹,𝑢,𝑣   𝜑,𝑓   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔,)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓)   𝑅(𝑣,𝑢,𝑔,)   𝐹(𝑦,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem10
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . 4 𝑦 ∈ V
21eldm2 5840 . . 3 (𝑦 ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐹)
3 frrlem9.1 . . . . . . . . 9 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem9.2 . . . . . . . . 9 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 8220 . . . . . . . 8 𝐹 = 𝐵
63unieqi 4868 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
75, 6eqtri 2754 . . . . . . 7 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
87eleq2i 2823 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
9 eluniab 4870 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
108, 9bitri 275 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
11 19.8a 2184 . . . . . . . . . . . . . 14 ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
12113ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
13 abid 2713 . . . . . . . . . . . . 13 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
1412, 13sylibr 234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
15 elssuni 4887 . . . . . . . . . . . 12 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1614, 15syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑓 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1716, 7sseqtrrdi 3971 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑓𝐹)
18 simpl23 1254 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
19 simpl3 1194 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → ⟨𝑦, 𝑧⟩ ∈ 𝑓)
20 vex 3440 . . . . . . . . . . . . . . 15 𝑧 ∈ V
211, 20opeldm 5846 . . . . . . . . . . . . . 14 (⟨𝑦, 𝑧⟩ ∈ 𝑓𝑦 ∈ dom 𝑓)
2219, 21syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝑦 ∈ dom 𝑓)
23 simpl21 1252 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝑓 Fn 𝑥)
2423fndmd 6586 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → dom 𝑓 = 𝑥)
2522, 24eleqtrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝑦𝑥)
26 rsp 3220 . . . . . . . . . . . 12 (∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑦𝑥 → (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2718, 25, 26sylc 65 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
28 simpl1 1192 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝜑)
29 frrlem9.3 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
303, 4, 29frrlem9 8224 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
3128, 30syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → Fun 𝐹)
32 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → 𝑓𝐹)
33 funssfv 6843 . . . . . . . . . . . 12 ((Fun 𝐹𝑓𝐹𝑦 ∈ dom 𝑓) → (𝐹𝑦) = (𝑓𝑦))
3431, 32, 22, 33syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝐹𝑦) = (𝑓𝑦))
35 simp22r 1294 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)
3635adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)
37 rsp 3220 . . . . . . . . . . . . . . 15 (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥))
3836, 25, 37sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)
3938, 24sseqtrrd 3967 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓)
40 fun2ssres 6526 . . . . . . . . . . . . 13 ((Fun 𝐹𝑓𝐹 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
4131, 32, 39, 40syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
4241oveq2d 7362 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
4327, 34, 423eqtr4d 2776 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) ∧ 𝑓𝐹) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
4417, 43mpdan 687 . . . . . . . . 9 ((𝜑 ∧ (𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
45443exp 1119 . . . . . . . 8 (𝜑 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
4645exlimdv 1934 . . . . . . 7 (𝜑 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
4746impcomd 411 . . . . . 6 (𝜑 → ((⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4847exlimdv 1934 . . . . 5 (𝜑 → (∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4910, 48biimtrid 242 . . . 4 (𝜑 → (⟨𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5049exlimdv 1934 . . 3 (𝜑 → (∃𝑧𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
512, 50biimtrid 242 . 2 (𝜑 → (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5251imp 406 1 ((𝜑𝑦 ∈ dom 𝐹) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wss 3897  cop 4579   cuni 4856   class class class wbr 5089  dom cdm 5614  cres 5616  Predcpred 6247  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  frecscfrecs 8210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-frecs 8211
This theorem is referenced by:  frrlem12  8227  fpr2a  8232  frr2  9653
  Copyright terms: Public domain W3C validator