Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrlem7 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of 𝐴. (Contributed by Scott Fenton, 27-Aug-2022.) |
Ref | Expression |
---|---|
frrlem5.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem5.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
frrlem7 | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem5.1 | . . . . . . 7 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
2 | frrlem5.2 | . . . . . . 7 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
3 | 1, 2 | frrlem5 8137 | . . . . . 6 ⊢ 𝐹 = ∪ 𝐵 |
4 | 3 | dmeqi 5826 | . . . . 5 ⊢ dom 𝐹 = dom ∪ 𝐵 |
5 | dmuni 5836 | . . . . 5 ⊢ dom ∪ 𝐵 = ∪ 𝑔 ∈ 𝐵 dom 𝑔 | |
6 | 4, 5 | eqtri 2764 | . . . 4 ⊢ dom 𝐹 = ∪ 𝑔 ∈ 𝐵 dom 𝑔 |
7 | 6 | sseq1i 3954 | . . 3 ⊢ (dom 𝐹 ⊆ 𝐴 ↔ ∪ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) |
8 | iunss 4982 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴 ↔ ∀𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) | |
9 | 7, 8 | bitri 275 | . 2 ⊢ (dom 𝐹 ⊆ 𝐴 ↔ ∀𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) |
10 | 1 | frrlem3 8135 | . 2 ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
11 | 9, 10 | mprgbir 3069 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∃wex 1779 {cab 2713 ∀wral 3062 ⊆ wss 3892 ∪ cuni 4844 ∪ ciun 4931 dom cdm 5600 ↾ cres 5602 Predcpred 6216 Fn wfn 6453 ‘cfv 6458 (class class class)co 7307 frecscfrecs 8127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-iota 6410 df-fun 6460 df-fn 6461 df-fv 6466 df-ov 7310 df-frecs 8128 |
This theorem is referenced by: frrlem14 8146 frrdmss 8154 |
Copyright terms: Public domain | W3C validator |