| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frrlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of 𝐴. (Contributed by Scott Fenton, 27-Aug-2022.) |
| Ref | Expression |
|---|---|
| frrlem5.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| frrlem5.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| frrlem7 | ⊢ dom 𝐹 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem5.1 | . . . . . . 7 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
| 2 | frrlem5.2 | . . . . . . 7 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
| 3 | 1, 2 | frrlem5 8220 | . . . . . 6 ⊢ 𝐹 = ∪ 𝐵 |
| 4 | 3 | dmeqi 5843 | . . . . 5 ⊢ dom 𝐹 = dom ∪ 𝐵 |
| 5 | dmuni 5853 | . . . . 5 ⊢ dom ∪ 𝐵 = ∪ 𝑔 ∈ 𝐵 dom 𝑔 | |
| 6 | 4, 5 | eqtri 2754 | . . . 4 ⊢ dom 𝐹 = ∪ 𝑔 ∈ 𝐵 dom 𝑔 |
| 7 | 6 | sseq1i 3958 | . . 3 ⊢ (dom 𝐹 ⊆ 𝐴 ↔ ∪ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) |
| 8 | iunss 4992 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴 ↔ ∀𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) | |
| 9 | 7, 8 | bitri 275 | . 2 ⊢ (dom 𝐹 ⊆ 𝐴 ↔ ∀𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) |
| 10 | 1 | frrlem3 8218 | . 2 ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
| 11 | 9, 10 | mprgbir 3054 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 {cab 2709 ∀wral 3047 ⊆ wss 3897 ∪ cuni 4856 ∪ ciun 4939 dom cdm 5614 ↾ cres 5616 Predcpred 6247 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 frecscfrecs 8210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 df-frecs 8211 |
| This theorem is referenced by: frrlem14 8229 frrdmss 8237 |
| Copyright terms: Public domain | W3C validator |