Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrlem7 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of 𝐴. (Contributed by Scott Fenton, 27-Aug-2022.) |
Ref | Expression |
---|---|
frrlem5.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem5.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
frrlem7 | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem5.1 | . . . . . . 7 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
2 | frrlem5.2 | . . . . . . 7 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
3 | 1, 2 | frrlem5 8090 | . . . . . 6 ⊢ 𝐹 = ∪ 𝐵 |
4 | 3 | dmeqi 5810 | . . . . 5 ⊢ dom 𝐹 = dom ∪ 𝐵 |
5 | dmuni 5820 | . . . . 5 ⊢ dom ∪ 𝐵 = ∪ 𝑔 ∈ 𝐵 dom 𝑔 | |
6 | 4, 5 | eqtri 2767 | . . . 4 ⊢ dom 𝐹 = ∪ 𝑔 ∈ 𝐵 dom 𝑔 |
7 | 6 | sseq1i 3953 | . . 3 ⊢ (dom 𝐹 ⊆ 𝐴 ↔ ∪ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) |
8 | iunss 4979 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴 ↔ ∀𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) | |
9 | 7, 8 | bitri 274 | . 2 ⊢ (dom 𝐹 ⊆ 𝐴 ↔ ∀𝑔 ∈ 𝐵 dom 𝑔 ⊆ 𝐴) |
10 | 1 | frrlem3 8088 | . 2 ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
11 | 9, 10 | mprgbir 3080 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∃wex 1785 {cab 2716 ∀wral 3065 ⊆ wss 3891 ∪ cuni 4844 ∪ ciun 4929 dom cdm 5588 ↾ cres 5590 Predcpred 6198 Fn wfn 6425 ‘cfv 6430 (class class class)co 7268 frecscfrecs 8080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 df-ov 7271 df-frecs 8081 |
This theorem is referenced by: frrlem14 8099 frrdmss 8107 |
Copyright terms: Public domain | W3C validator |