MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem7 Structured version   Visualization version   GIF version

Theorem frrlem7 8225
Description: Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of 𝐴. (Contributed by Scott Fenton, 27-Aug-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem7 dom 𝐹𝐴
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem frrlem7
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 frrlem5.1 . . . . . . 7 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem5.2 . . . . . . 7 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem5 8223 . . . . . 6 𝐹 = 𝐵
43dmeqi 5847 . . . . 5 dom 𝐹 = dom 𝐵
5 dmuni 5857 . . . . 5 dom 𝐵 = 𝑔𝐵 dom 𝑔
64, 5eqtri 2752 . . . 4 dom 𝐹 = 𝑔𝐵 dom 𝑔
76sseq1i 3964 . . 3 (dom 𝐹𝐴 𝑔𝐵 dom 𝑔𝐴)
8 iunss 4994 . . 3 ( 𝑔𝐵 dom 𝑔𝐴 ↔ ∀𝑔𝐵 dom 𝑔𝐴)
97, 8bitri 275 . 2 (dom 𝐹𝐴 ↔ ∀𝑔𝐵 dom 𝑔𝐴)
101frrlem3 8221 . 2 (𝑔𝐵 → dom 𝑔𝐴)
119, 10mprgbir 3051 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wex 1779  {cab 2707  wral 3044  wss 3903   cuni 4858   ciun 4941  dom cdm 5619  cres 5621  Predcpred 6248   Fn wfn 6477  cfv 6482  (class class class)co 7349  frecscfrecs 8213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352  df-frecs 8214
This theorem is referenced by:  frrlem14  8232  frrdmss  8240
  Copyright terms: Public domain W3C validator