MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem7 Structured version   Visualization version   GIF version

Theorem frrlem7 8296
Description: Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of 𝐴. (Contributed by Scott Fenton, 27-Aug-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem7 dom 𝐹𝐴
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem frrlem7
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 frrlem5.1 . . . . . . 7 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem5.2 . . . . . . 7 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem5 8294 . . . . . 6 𝐹 = 𝐵
43dmeqi 5889 . . . . 5 dom 𝐹 = dom 𝐵
5 dmuni 5899 . . . . 5 dom 𝐵 = 𝑔𝐵 dom 𝑔
64, 5eqtri 2759 . . . 4 dom 𝐹 = 𝑔𝐵 dom 𝑔
76sseq1i 3992 . . 3 (dom 𝐹𝐴 𝑔𝐵 dom 𝑔𝐴)
8 iunss 5026 . . 3 ( 𝑔𝐵 dom 𝑔𝐴 ↔ ∀𝑔𝐵 dom 𝑔𝐴)
97, 8bitri 275 . 2 (dom 𝐹𝐴 ↔ ∀𝑔𝐵 dom 𝑔𝐴)
101frrlem3 8292 . 2 (𝑔𝐵 → dom 𝑔𝐴)
119, 10mprgbir 3059 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wex 1779  {cab 2714  wral 3052  wss 3931   cuni 4888   ciun 4972  dom cdm 5659  cres 5661  Predcpred 6294   Fn wfn 6531  cfv 6536  (class class class)co 7410  frecscfrecs 8284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-ov 7413  df-frecs 8285
This theorem is referenced by:  frrlem14  8303  frrdmss  8311
  Copyright terms: Public domain W3C validator