MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem7 Structured version   Visualization version   GIF version

Theorem frrlem7 8011
Description: Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of 𝐴. (Contributed by Scott Fenton, 27-Aug-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem7 dom 𝐹𝐴
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem frrlem7
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 frrlem5.1 . . . . . . 7 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem5.2 . . . . . . 7 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem5 8009 . . . . . 6 𝐹 = 𝐵
43dmeqi 5758 . . . . 5 dom 𝐹 = dom 𝐵
5 dmuni 5768 . . . . 5 dom 𝐵 = 𝑔𝐵 dom 𝑔
64, 5eqtri 2759 . . . 4 dom 𝐹 = 𝑔𝐵 dom 𝑔
76sseq1i 3915 . . 3 (dom 𝐹𝐴 𝑔𝐵 dom 𝑔𝐴)
8 iunss 4940 . . 3 ( 𝑔𝐵 dom 𝑔𝐴 ↔ ∀𝑔𝐵 dom 𝑔𝐴)
97, 8bitri 278 . 2 (dom 𝐹𝐴 ↔ ∀𝑔𝐵 dom 𝑔𝐴)
101frrlem3 8007 . 2 (𝑔𝐵 → dom 𝑔𝐴)
119, 10mprgbir 3066 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1089   = wceq 1543  wex 1787  {cab 2714  wral 3051  wss 3853   cuni 4805   ciun 4890  dom cdm 5536  cres 5538  Predcpred 6139   Fn wfn 6353  cfv 6358  (class class class)co 7191  frecscfrecs 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-iota 6316  df-fun 6360  df-fn 6361  df-fv 6366  df-ov 7194  df-frecs 8001
This theorem is referenced by:  frrlem14  8018
  Copyright terms: Public domain W3C validator