MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem8 Structured version   Visualization version   GIF version

Theorem frrlem8 8223
Description: Lemma for well-founded recursion. dom 𝐹 is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem8 (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑦,𝐹   𝑧,𝐴,𝑓,𝑥,𝑦   𝑧,𝑅   𝑧,𝐺
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑓)   𝐹(𝑥,𝑧,𝑓)

Proof of Theorem frrlem8
Dummy variables 𝑔 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . 3 𝑧 ∈ V
21eldm2 5840 . 2 (𝑧 ∈ dom 𝐹 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐹)
3 frrlem5.1 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem5.2 . . . . . . . 8 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 8220 . . . . . . 7 𝐹 = 𝐵
63frrlem1 8216 . . . . . . . 8 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
76unieqi 4868 . . . . . . 7 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
85, 7eqtri 2754 . . . . . 6 𝐹 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
98eleq2i 2823 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))})
10 eluniab 4870 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} ↔ ∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))))
119, 10bitri 275 . . . 4 (⟨𝑧, 𝑤⟩ ∈ 𝐹 ↔ ∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))))
12 simpr2r 1234 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)
13 vex 3440 . . . . . . . . . . . . . 14 𝑤 ∈ V
141, 13opeldm 5846 . . . . . . . . . . . . 13 (⟨𝑧, 𝑤⟩ ∈ 𝑔𝑧 ∈ dom 𝑔)
1514adantr 480 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧 ∈ dom 𝑔)
16 simpr1 1195 . . . . . . . . . . . . 13 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 Fn 𝑎)
1716fndmd 6586 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 = 𝑎)
1815, 17eleqtrd 2833 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧𝑎)
19 rsp 3220 . . . . . . . . . . 11 (∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎 → (𝑧𝑎 → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎))
2012, 18, 19sylc 65 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)
2120, 17sseqtrrd 3967 . . . . . . . . 9 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝑔)
22 19.8a 2184 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))
236eqabri 2874 . . . . . . . . . . . . . 14 (𝑔𝐵 ↔ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))
2422, 23sylibr 234 . . . . . . . . . . . . 13 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝑔𝐵)
2524adantl 481 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔𝐵)
26 elssuni 4887 . . . . . . . . . . . 12 (𝑔𝐵𝑔 𝐵)
2725, 26syl 17 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 𝐵)
2827, 5sseqtrrdi 3971 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔𝐹)
29 dmss 5841 . . . . . . . . . 10 (𝑔𝐹 → dom 𝑔 ⊆ dom 𝐹)
3028, 29syl 17 . . . . . . . . 9 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 ⊆ dom 𝐹)
3121, 30sstrd 3940 . . . . . . . 8 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3231expcom 413 . . . . . . 7 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (⟨𝑧, 𝑤⟩ ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹))
3332exlimiv 1931 . . . . . 6 (∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (⟨𝑧, 𝑤⟩ ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹))
3433impcom 407 . . . . 5 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3534exlimiv 1931 . . . 4 (∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3611, 35sylbi 217 . . 3 (⟨𝑧, 𝑤⟩ ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3736exlimiv 1931 . 2 (∃𝑤𝑧, 𝑤⟩ ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
382, 37sylbi 217 1 (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wss 3897  cop 4579   cuni 4856  dom cdm 5614  cres 5616  Predcpred 6247   Fn wfn 6476  cfv 6481  (class class class)co 7346  frecscfrecs 8210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-frecs 8211
This theorem is referenced by:  frrlem12  8227  frrlem13  8228  frrdmcl  8238
  Copyright terms: Public domain W3C validator