Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . 3
⊢ 𝑧 ∈ V |
2 | 1 | eldm2 5810 |
. 2
⊢ (𝑧 ∈ dom 𝐹 ↔ ∃𝑤〈𝑧, 𝑤〉 ∈ 𝐹) |
3 | | frrlem5.1 |
. . . . . . . 8
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
4 | | frrlem5.2 |
. . . . . . . 8
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
5 | 3, 4 | frrlem5 8106 |
. . . . . . 7
⊢ 𝐹 = ∪
𝐵 |
6 | 3 | frrlem1 8102 |
. . . . . . . 8
⊢ 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
7 | 6 | unieqi 4852 |
. . . . . . 7
⊢ ∪ 𝐵 =
∪ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
8 | 5, 7 | eqtri 2766 |
. . . . . 6
⊢ 𝐹 = ∪
{𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
9 | 8 | eleq2i 2830 |
. . . . 5
⊢
(〈𝑧, 𝑤〉 ∈ 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ∪
{𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}) |
10 | | eluniab 4854 |
. . . . 5
⊢
(〈𝑧, 𝑤〉 ∈ ∪ {𝑔
∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} ↔ ∃𝑔(〈𝑧, 𝑤〉 ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))) |
11 | 9, 10 | bitri 274 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ 𝐹 ↔ ∃𝑔(〈𝑧, 𝑤〉 ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))) |
12 | | simpr2r 1232 |
. . . . . . . . . . 11
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) |
13 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
14 | 1, 13 | opeldm 5816 |
. . . . . . . . . . . . 13
⊢
(〈𝑧, 𝑤〉 ∈ 𝑔 → 𝑧 ∈ dom 𝑔) |
15 | 14 | adantr 481 |
. . . . . . . . . . . 12
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧 ∈ dom 𝑔) |
16 | | simpr1 1193 |
. . . . . . . . . . . . 13
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 Fn 𝑎) |
17 | 16 | fndmd 6538 |
. . . . . . . . . . . 12
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 = 𝑎) |
18 | 15, 17 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧 ∈ 𝑎) |
19 | | rsp 3131 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎 → (𝑧 ∈ 𝑎 → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)) |
20 | 12, 18, 19 | sylc 65 |
. . . . . . . . . 10
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) |
21 | 20, 17 | sseqtrrd 3962 |
. . . . . . . . 9
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝑔) |
22 | | 19.8a 2174 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) |
23 | 6 | abeq2i 2875 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) |
24 | 22, 23 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝑔 ∈ 𝐵) |
25 | 24 | adantl 482 |
. . . . . . . . . . . 12
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 ∈ 𝐵) |
26 | | elssuni 4871 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ 𝐵 → 𝑔 ⊆ ∪ 𝐵) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 ⊆ ∪ 𝐵) |
28 | 27, 5 | sseqtrrdi 3972 |
. . . . . . . . . 10
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 ⊆ 𝐹) |
29 | | dmss 5811 |
. . . . . . . . . 10
⊢ (𝑔 ⊆ 𝐹 → dom 𝑔 ⊆ dom 𝐹) |
30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 ⊆ dom 𝐹) |
31 | 21, 30 | sstrd 3931 |
. . . . . . . 8
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
32 | 31 | expcom 414 |
. . . . . . 7
⊢ ((𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (〈𝑧, 𝑤〉 ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)) |
33 | 32 | exlimiv 1933 |
. . . . . 6
⊢
(∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (〈𝑧, 𝑤〉 ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)) |
34 | 33 | impcom 408 |
. . . . 5
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
35 | 34 | exlimiv 1933 |
. . . 4
⊢
(∃𝑔(〈𝑧, 𝑤〉 ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
36 | 11, 35 | sylbi 216 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
37 | 36 | exlimiv 1933 |
. 2
⊢
(∃𝑤〈𝑧, 𝑤〉 ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
38 | 2, 37 | sylbi 216 |
1
⊢ (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |