| Step | Hyp | Ref
| Expression |
| 1 | | vex 3468 |
. . 3
⊢ 𝑧 ∈ V |
| 2 | 1 | eldm2 5886 |
. 2
⊢ (𝑧 ∈ dom 𝐹 ↔ ∃𝑤〈𝑧, 𝑤〉 ∈ 𝐹) |
| 3 | | frrlem5.1 |
. . . . . . . 8
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| 4 | | frrlem5.2 |
. . . . . . . 8
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
| 5 | 3, 4 | frrlem5 8294 |
. . . . . . 7
⊢ 𝐹 = ∪
𝐵 |
| 6 | 3 | frrlem1 8290 |
. . . . . . . 8
⊢ 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 7 | 6 | unieqi 4900 |
. . . . . . 7
⊢ ∪ 𝐵 =
∪ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 8 | 5, 7 | eqtri 2759 |
. . . . . 6
⊢ 𝐹 = ∪
{𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 9 | 8 | eleq2i 2827 |
. . . . 5
⊢
(〈𝑧, 𝑤〉 ∈ 𝐹 ↔ 〈𝑧, 𝑤〉 ∈ ∪
{𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}) |
| 10 | | eluniab 4902 |
. . . . 5
⊢
(〈𝑧, 𝑤〉 ∈ ∪ {𝑔
∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} ↔ ∃𝑔(〈𝑧, 𝑤〉 ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))) |
| 11 | 9, 10 | bitri 275 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ 𝐹 ↔ ∃𝑔(〈𝑧, 𝑤〉 ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))) |
| 12 | | simpr2r 1234 |
. . . . . . . . . . 11
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) |
| 13 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
| 14 | 1, 13 | opeldm 5892 |
. . . . . . . . . . . . 13
⊢
(〈𝑧, 𝑤〉 ∈ 𝑔 → 𝑧 ∈ dom 𝑔) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧 ∈ dom 𝑔) |
| 16 | | simpr1 1195 |
. . . . . . . . . . . . 13
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 Fn 𝑎) |
| 17 | 16 | fndmd 6648 |
. . . . . . . . . . . 12
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 = 𝑎) |
| 18 | 15, 17 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧 ∈ 𝑎) |
| 19 | | rsp 3234 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎 → (𝑧 ∈ 𝑎 → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)) |
| 20 | 12, 18, 19 | sylc 65 |
. . . . . . . . . 10
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) |
| 21 | 20, 17 | sseqtrrd 4001 |
. . . . . . . . 9
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝑔) |
| 22 | | 19.8a 2182 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) |
| 23 | 6 | eqabri 2879 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) |
| 24 | 22, 23 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝑔 ∈ 𝐵) |
| 25 | 24 | adantl 481 |
. . . . . . . . . . . 12
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 ∈ 𝐵) |
| 26 | | elssuni 4918 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ 𝐵 → 𝑔 ⊆ ∪ 𝐵) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 ⊆ ∪ 𝐵) |
| 28 | 27, 5 | sseqtrrdi 4005 |
. . . . . . . . . 10
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 ⊆ 𝐹) |
| 29 | | dmss 5887 |
. . . . . . . . . 10
⊢ (𝑔 ⊆ 𝐹 → dom 𝑔 ⊆ dom 𝐹) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 ⊆ dom 𝐹) |
| 31 | 21, 30 | sstrd 3974 |
. . . . . . . 8
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
| 32 | 31 | expcom 413 |
. . . . . . 7
⊢ ((𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (〈𝑧, 𝑤〉 ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)) |
| 33 | 32 | exlimiv 1930 |
. . . . . 6
⊢
(∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (〈𝑧, 𝑤〉 ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)) |
| 34 | 33 | impcom 407 |
. . . . 5
⊢
((〈𝑧, 𝑤〉 ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
| 35 | 34 | exlimiv 1930 |
. . . 4
⊢
(∃𝑔(〈𝑧, 𝑤〉 ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧 ∈ 𝑎 (𝑔‘𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
| 36 | 11, 35 | sylbi 217 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
| 37 | 36 | exlimiv 1930 |
. 2
⊢
(∃𝑤〈𝑧, 𝑤〉 ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |
| 38 | 2, 37 | sylbi 217 |
1
⊢ (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) |