MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem8 Structured version   Visualization version   GIF version

Theorem frrlem8 8249
Description: Lemma for well-founded recursion. dom 𝐹 is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem8 (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑦,𝐹   𝑧,𝐴,𝑓,𝑥,𝑦   𝑧,𝑅   𝑧,𝐺
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑓)   𝐹(𝑥,𝑧,𝑓)

Proof of Theorem frrlem8
Dummy variables 𝑔 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . 3 𝑧 ∈ V
21eldm2 5855 . 2 (𝑧 ∈ dom 𝐹 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐹)
3 frrlem5.1 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem5.2 . . . . . . . 8 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 8246 . . . . . . 7 𝐹 = 𝐵
63frrlem1 8242 . . . . . . . 8 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
76unieqi 4879 . . . . . . 7 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
85, 7eqtri 2752 . . . . . 6 𝐹 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
98eleq2i 2820 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))})
10 eluniab 4881 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} ↔ ∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))))
119, 10bitri 275 . . . 4 (⟨𝑧, 𝑤⟩ ∈ 𝐹 ↔ ∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))))
12 simpr2r 1234 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)
13 vex 3448 . . . . . . . . . . . . . 14 𝑤 ∈ V
141, 13opeldm 5861 . . . . . . . . . . . . 13 (⟨𝑧, 𝑤⟩ ∈ 𝑔𝑧 ∈ dom 𝑔)
1514adantr 480 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧 ∈ dom 𝑔)
16 simpr1 1195 . . . . . . . . . . . . 13 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 Fn 𝑎)
1716fndmd 6605 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 = 𝑎)
1815, 17eleqtrd 2830 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧𝑎)
19 rsp 3223 . . . . . . . . . . 11 (∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎 → (𝑧𝑎 → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎))
2012, 18, 19sylc 65 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)
2120, 17sseqtrrd 3981 . . . . . . . . 9 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝑔)
22 19.8a 2182 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))
236eqabri 2871 . . . . . . . . . . . . . 14 (𝑔𝐵 ↔ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))
2422, 23sylibr 234 . . . . . . . . . . . . 13 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝑔𝐵)
2524adantl 481 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔𝐵)
26 elssuni 4897 . . . . . . . . . . . 12 (𝑔𝐵𝑔 𝐵)
2725, 26syl 17 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 𝐵)
2827, 5sseqtrrdi 3985 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔𝐹)
29 dmss 5856 . . . . . . . . . 10 (𝑔𝐹 → dom 𝑔 ⊆ dom 𝐹)
3028, 29syl 17 . . . . . . . . 9 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 ⊆ dom 𝐹)
3121, 30sstrd 3954 . . . . . . . 8 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3231expcom 413 . . . . . . 7 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (⟨𝑧, 𝑤⟩ ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹))
3332exlimiv 1930 . . . . . 6 (∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (⟨𝑧, 𝑤⟩ ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹))
3433impcom 407 . . . . 5 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3534exlimiv 1930 . . . 4 (∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3611, 35sylbi 217 . . 3 (⟨𝑧, 𝑤⟩ ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3736exlimiv 1930 . 2 (∃𝑤𝑧, 𝑤⟩ ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
382, 37sylbi 217 1 (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wss 3911  cop 4591   cuni 4867  dom cdm 5631  cres 5633  Predcpred 6261   Fn wfn 6494  cfv 6499  (class class class)co 7369  frecscfrecs 8236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372  df-frecs 8237
This theorem is referenced by:  frrlem12  8253  frrlem13  8254  frrdmcl  8264
  Copyright terms: Public domain W3C validator