MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem8 Structured version   Visualization version   GIF version

Theorem frrlem8 8272
Description: Lemma for well-founded recursion. dom 𝐹 is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem8 (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑦,𝐹   𝑧,𝐴,𝑓,𝑥,𝑦   𝑧,𝑅   𝑧,𝐺
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑓)   𝐹(𝑥,𝑧,𝑓)

Proof of Theorem frrlem8
Dummy variables 𝑔 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . 3 𝑧 ∈ V
21eldm2 5865 . 2 (𝑧 ∈ dom 𝐹 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐹)
3 frrlem5.1 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem5.2 . . . . . . . 8 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 8269 . . . . . . 7 𝐹 = 𝐵
63frrlem1 8265 . . . . . . . 8 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
76unieqi 4883 . . . . . . 7 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
85, 7eqtri 2752 . . . . . 6 𝐹 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
98eleq2i 2820 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))})
10 eluniab 4885 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} ↔ ∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))))
119, 10bitri 275 . . . 4 (⟨𝑧, 𝑤⟩ ∈ 𝐹 ↔ ∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))))
12 simpr2r 1234 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)
13 vex 3451 . . . . . . . . . . . . . 14 𝑤 ∈ V
141, 13opeldm 5871 . . . . . . . . . . . . 13 (⟨𝑧, 𝑤⟩ ∈ 𝑔𝑧 ∈ dom 𝑔)
1514adantr 480 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧 ∈ dom 𝑔)
16 simpr1 1195 . . . . . . . . . . . . 13 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 Fn 𝑎)
1716fndmd 6623 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 = 𝑎)
1815, 17eleqtrd 2830 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧𝑎)
19 rsp 3225 . . . . . . . . . . 11 (∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎 → (𝑧𝑎 → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎))
2012, 18, 19sylc 65 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)
2120, 17sseqtrrd 3984 . . . . . . . . 9 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝑔)
22 19.8a 2182 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))
236eqabri 2871 . . . . . . . . . . . . . 14 (𝑔𝐵 ↔ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))
2422, 23sylibr 234 . . . . . . . . . . . . 13 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝑔𝐵)
2524adantl 481 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔𝐵)
26 elssuni 4901 . . . . . . . . . . . 12 (𝑔𝐵𝑔 𝐵)
2725, 26syl 17 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 𝐵)
2827, 5sseqtrrdi 3988 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔𝐹)
29 dmss 5866 . . . . . . . . . 10 (𝑔𝐹 → dom 𝑔 ⊆ dom 𝐹)
3028, 29syl 17 . . . . . . . . 9 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 ⊆ dom 𝐹)
3121, 30sstrd 3957 . . . . . . . 8 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3231expcom 413 . . . . . . 7 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (⟨𝑧, 𝑤⟩ ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹))
3332exlimiv 1930 . . . . . 6 (∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (⟨𝑧, 𝑤⟩ ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹))
3433impcom 407 . . . . 5 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3534exlimiv 1930 . . . 4 (∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3611, 35sylbi 217 . . 3 (⟨𝑧, 𝑤⟩ ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3736exlimiv 1930 . 2 (∃𝑤𝑧, 𝑤⟩ ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
382, 37sylbi 217 1 (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wss 3914  cop 4595   cuni 4871  dom cdm 5638  cres 5640  Predcpred 6273   Fn wfn 6506  cfv 6511  (class class class)co 7387  frecscfrecs 8259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-frecs 8260
This theorem is referenced by:  frrlem12  8276  frrlem13  8277  frrdmcl  8287
  Copyright terms: Public domain W3C validator