MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem8 Structured version   Visualization version   GIF version

Theorem frrlem8 8109
Description: Lemma for well-founded recursion. dom 𝐹 is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem8 (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑦,𝐹   𝑧,𝐴,𝑓,𝑥,𝑦   𝑧,𝑅   𝑧,𝐺
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑓)   𝐹(𝑥,𝑧,𝑓)

Proof of Theorem frrlem8
Dummy variables 𝑔 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . 3 𝑧 ∈ V
21eldm2 5810 . 2 (𝑧 ∈ dom 𝐹 ↔ ∃𝑤𝑧, 𝑤⟩ ∈ 𝐹)
3 frrlem5.1 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem5.2 . . . . . . . 8 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 8106 . . . . . . 7 𝐹 = 𝐵
63frrlem1 8102 . . . . . . . 8 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
76unieqi 4852 . . . . . . 7 𝐵 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
85, 7eqtri 2766 . . . . . 6 𝐹 = {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))}
98eleq2i 2830 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))})
10 eluniab 4854 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {𝑔 ∣ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))} ↔ ∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))))
119, 10bitri 274 . . . 4 (⟨𝑧, 𝑤⟩ ∈ 𝐹 ↔ ∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))))
12 simpr2r 1232 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)
13 vex 3436 . . . . . . . . . . . . . 14 𝑤 ∈ V
141, 13opeldm 5816 . . . . . . . . . . . . 13 (⟨𝑧, 𝑤⟩ ∈ 𝑔𝑧 ∈ dom 𝑔)
1514adantr 481 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧 ∈ dom 𝑔)
16 simpr1 1193 . . . . . . . . . . . . 13 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 Fn 𝑎)
1716fndmd 6538 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 = 𝑎)
1815, 17eleqtrd 2841 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑧𝑎)
19 rsp 3131 . . . . . . . . . . 11 (∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎 → (𝑧𝑎 → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎))
2012, 18, 19sylc 65 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎)
2120, 17sseqtrrd 3962 . . . . . . . . 9 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝑔)
22 19.8a 2174 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))
236abeq2i 2875 . . . . . . . . . . . . . 14 (𝑔𝐵 ↔ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))))
2422, 23sylibr 233 . . . . . . . . . . . . 13 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝑔𝐵)
2524adantl 482 . . . . . . . . . . . 12 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔𝐵)
26 elssuni 4871 . . . . . . . . . . . 12 (𝑔𝐵𝑔 𝐵)
2725, 26syl 17 . . . . . . . . . . 11 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔 𝐵)
2827, 5sseqtrrdi 3972 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝑔𝐹)
29 dmss 5811 . . . . . . . . . 10 (𝑔𝐹 → dom 𝑔 ⊆ dom 𝐹)
3028, 29syl 17 . . . . . . . . 9 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → dom 𝑔 ⊆ dom 𝐹)
3121, 30sstrd 3931 . . . . . . . 8 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ (𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3231expcom 414 . . . . . . 7 ((𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (⟨𝑧, 𝑤⟩ ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹))
3332exlimiv 1933 . . . . . 6 (∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (⟨𝑧, 𝑤⟩ ∈ 𝑔 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹))
3433impcom 408 . . . . 5 ((⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3534exlimiv 1933 . . . 4 (∃𝑔(⟨𝑧, 𝑤⟩ ∈ 𝑔 ∧ ∃𝑎(𝑔 Fn 𝑎 ∧ (𝑎𝐴 ∧ ∀𝑧𝑎 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑎) ∧ ∀𝑧𝑎 (𝑔𝑧) = (𝑧𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑧))))) → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3611, 35sylbi 216 . . 3 (⟨𝑧, 𝑤⟩ ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
3736exlimiv 1933 . 2 (∃𝑤𝑧, 𝑤⟩ ∈ 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
382, 37sylbi 216 1 (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wss 3887  cop 4567   cuni 4839  dom cdm 5589  cres 5591  Predcpred 6201   Fn wfn 6428  cfv 6433  (class class class)co 7275  frecscfrecs 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-ov 7278  df-frecs 8097
This theorem is referenced by:  frrlem12  8113  frrlem13  8114  frrdmcl  8124
  Copyright terms: Public domain W3C validator