MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem4 Structured version   Visualization version   GIF version

Theorem frrlem4 8224
Description: Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypothesis
Ref Expression
frrlem4.1 𝐡 = {𝑓 ∣ βˆƒπ‘₯(𝑓 Fn π‘₯ ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘¦ ∈ π‘₯ Pred(𝑅, 𝐴, 𝑦) βŠ† π‘₯) ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (𝑦𝐺(𝑓 β†Ύ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
frrlem4 ((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) β†’ ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) Fn (dom 𝑔 ∩ dom β„Ž) ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž))β€˜π‘Ž) = (π‘ŽπΊ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) β†Ύ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)))))
Distinct variable groups:   𝐴,π‘Ž,𝑓,𝑔   𝐴,β„Ž,π‘₯,𝑦,π‘Ž   𝐡,π‘Ž   𝑓,β„Ž,π‘₯,𝑦   𝐺,π‘Ž,𝑓,𝑔   β„Ž,𝐺,π‘₯,𝑦   π‘₯,𝑔,𝑦   𝑅,π‘Ž,𝑓,𝑔   𝑅,β„Ž,π‘₯,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦,𝑓,𝑔,β„Ž)

Proof of Theorem frrlem4
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frrlem4.1 . . . . . 6 𝐡 = {𝑓 ∣ βˆƒπ‘₯(𝑓 Fn π‘₯ ∧ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘¦ ∈ π‘₯ Pred(𝑅, 𝐴, 𝑦) βŠ† π‘₯) ∧ βˆ€π‘¦ ∈ π‘₯ (π‘“β€˜π‘¦) = (𝑦𝐺(𝑓 β†Ύ Pred(𝑅, 𝐴, 𝑦))))}
21frrlem2 8222 . . . . 5 (𝑔 ∈ 𝐡 β†’ Fun 𝑔)
32funfnd 6536 . . . 4 (𝑔 ∈ 𝐡 β†’ 𝑔 Fn dom 𝑔)
4 fnresin1 6630 . . . 4 (𝑔 Fn dom 𝑔 β†’ (𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) Fn (dom 𝑔 ∩ dom β„Ž))
53, 4syl 17 . . 3 (𝑔 ∈ 𝐡 β†’ (𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) Fn (dom 𝑔 ∩ dom β„Ž))
65adantr 482 . 2 ((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) β†’ (𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) Fn (dom 𝑔 ∩ dom β„Ž))
71frrlem1 8221 . . . . . . . 8 𝐡 = {𝑔 ∣ βˆƒπ‘(𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž))))}
87eqabi 2878 . . . . . . 7 (𝑔 ∈ 𝐡 ↔ βˆƒπ‘(𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))))
9 fndm 6609 . . . . . . . . . . . 12 (𝑔 Fn 𝑏 β†’ dom 𝑔 = 𝑏)
109adantr 482 . . . . . . . . . . 11 ((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏)) β†’ dom 𝑔 = 𝑏)
1110raleqdv 3312 . . . . . . . . . 10 ((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏)) β†’ (βˆ€π‘Ž ∈ dom 𝑔(π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž))) ↔ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))))
1211biimp3ar 1471 . . . . . . . . 9 ((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) β†’ βˆ€π‘Ž ∈ dom 𝑔(π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž))))
13 rsp 3229 . . . . . . . . 9 (βˆ€π‘Ž ∈ dom 𝑔(π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž))) β†’ (π‘Ž ∈ dom 𝑔 β†’ (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))))
1412, 13syl 17 . . . . . . . 8 ((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) β†’ (π‘Ž ∈ dom 𝑔 β†’ (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))))
1514exlimiv 1934 . . . . . . 7 (βˆƒπ‘(𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) β†’ (π‘Ž ∈ dom 𝑔 β†’ (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))))
168, 15sylbi 216 . . . . . 6 (𝑔 ∈ 𝐡 β†’ (π‘Ž ∈ dom 𝑔 β†’ (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))))
17 elinel1 4159 . . . . . 6 (π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž) β†’ π‘Ž ∈ dom 𝑔)
1816, 17impel 507 . . . . 5 ((𝑔 ∈ 𝐡 ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž))))
1918adantlr 714 . . . 4 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž))))
20 simpr 486 . . . . 5 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž))
2120fvresd 6866 . . . 4 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž))β€˜π‘Ž) = (π‘”β€˜π‘Ž))
22 resres 5954 . . . . . 6 ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) β†Ύ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)) = (𝑔 β†Ύ ((dom 𝑔 ∩ dom β„Ž) ∩ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)))
23 predss 6265 . . . . . . . . 9 Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)
24 sseqin2 4179 . . . . . . . . 9 (Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž) ↔ ((dom 𝑔 ∩ dom β„Ž) ∩ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)) = Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž))
2523, 24mpbi 229 . . . . . . . 8 ((dom 𝑔 ∩ dom β„Ž) ∩ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)) = Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)
261frrlem1 8221 . . . . . . . . . . . 12 𝐡 = {β„Ž ∣ βˆƒπ‘(β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))}
2726eqabi 2878 . . . . . . . . . . 11 (β„Ž ∈ 𝐡 ↔ βˆƒπ‘(β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž)))))
28 exdistrv 1960 . . . . . . . . . . . 12 (βˆƒπ‘βˆƒπ‘((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) ↔ (βˆƒπ‘(𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ βˆƒπ‘(β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))))
29 inss1 4192 . . . . . . . . . . . . . . 15 (𝑏 ∩ 𝑐) βŠ† 𝑏
30 simpl2l 1227 . . . . . . . . . . . . . . 15 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ 𝑏 βŠ† 𝐴)
3129, 30sstrid 3959 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ (𝑏 ∩ 𝑐) βŠ† 𝐴)
32 simp2r 1201 . . . . . . . . . . . . . . 15 ((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) β†’ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏)
33 simp2r 1201 . . . . . . . . . . . . . . 15 ((β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) β†’ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐)
34 nfra1 3266 . . . . . . . . . . . . . . . . 17 β„²π‘Žβˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏
35 nfra1 3266 . . . . . . . . . . . . . . . . 17 β„²π‘Žβˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐
3634, 35nfan 1903 . . . . . . . . . . . . . . . 16 β„²π‘Ž(βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐)
37 elinel1 4159 . . . . . . . . . . . . . . . . . . 19 (π‘Ž ∈ (𝑏 ∩ 𝑐) β†’ π‘Ž ∈ 𝑏)
38 rsp 3229 . . . . . . . . . . . . . . . . . . 19 (βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 β†’ (π‘Ž ∈ 𝑏 β†’ Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏))
3937, 38syl5com 31 . . . . . . . . . . . . . . . . . 18 (π‘Ž ∈ (𝑏 ∩ 𝑐) β†’ (βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 β†’ Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏))
40 elinel2 4160 . . . . . . . . . . . . . . . . . . 19 (π‘Ž ∈ (𝑏 ∩ 𝑐) β†’ π‘Ž ∈ 𝑐)
41 rsp 3229 . . . . . . . . . . . . . . . . . . 19 (βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐 β†’ (π‘Ž ∈ 𝑐 β†’ Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐))
4240, 41syl5com 31 . . . . . . . . . . . . . . . . . 18 (π‘Ž ∈ (𝑏 ∩ 𝑐) β†’ (βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐 β†’ Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐))
4339, 42anim12d 610 . . . . . . . . . . . . . . . . 17 (π‘Ž ∈ (𝑏 ∩ 𝑐) β†’ ((βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) β†’ (Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 ∧ Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐)))
44 ssin 4194 . . . . . . . . . . . . . . . . . 18 ((Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 ∧ Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ↔ Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐))
4544biimpi 215 . . . . . . . . . . . . . . . . 17 ((Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 ∧ Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) β†’ Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐))
4643, 45syl6com 37 . . . . . . . . . . . . . . . 16 ((βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) β†’ (π‘Ž ∈ (𝑏 ∩ 𝑐) β†’ Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐)))
4736, 46ralrimi 3239 . . . . . . . . . . . . . . 15 ((βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) β†’ βˆ€π‘Ž ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐))
4832, 33, 47syl2an 597 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ βˆ€π‘Ž ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐))
49 simpl1 1192 . . . . . . . . . . . . . . . 16 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ 𝑔 Fn 𝑏)
5049fndmd 6611 . . . . . . . . . . . . . . 15 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ dom 𝑔 = 𝑏)
51 simpr1 1195 . . . . . . . . . . . . . . . 16 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ β„Ž Fn 𝑐)
5251fndmd 6611 . . . . . . . . . . . . . . 15 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ dom β„Ž = 𝑐)
53 ineq12 4171 . . . . . . . . . . . . . . . . 17 ((dom 𝑔 = 𝑏 ∧ dom β„Ž = 𝑐) β†’ (dom 𝑔 ∩ dom β„Ž) = (𝑏 ∩ 𝑐))
5453sseq1d 3979 . . . . . . . . . . . . . . . 16 ((dom 𝑔 = 𝑏 ∧ dom β„Ž = 𝑐) β†’ ((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ↔ (𝑏 ∩ 𝑐) βŠ† 𝐴))
5553sseq2d 3980 . . . . . . . . . . . . . . . . 17 ((dom 𝑔 = 𝑏 ∧ dom β„Ž = 𝑐) β†’ (Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž) ↔ Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐)))
5653, 55raleqbidv 3318 . . . . . . . . . . . . . . . 16 ((dom 𝑔 = 𝑏 ∧ dom β„Ž = 𝑐) β†’ (βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž) ↔ βˆ€π‘Ž ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐)))
5754, 56anbi12d 632 . . . . . . . . . . . . . . 15 ((dom 𝑔 = 𝑏 ∧ dom β„Ž = 𝑐) β†’ (((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)) ↔ ((𝑏 ∩ 𝑐) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐))))
5850, 52, 57syl2anc 585 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ (((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)) ↔ ((𝑏 ∩ 𝑐) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, π‘Ž) βŠ† (𝑏 ∩ 𝑐))))
5931, 48, 58mpbir2and 712 . . . . . . . . . . . . 13 (((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ ((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)))
6059exlimivv 1936 . . . . . . . . . . . 12 (βˆƒπ‘βˆƒπ‘((𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ (β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ ((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)))
6128, 60sylbir 234 . . . . . . . . . . 11 ((βˆƒπ‘(𝑔 Fn 𝑏 ∧ (𝑏 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑏 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑏) ∧ βˆ€π‘Ž ∈ 𝑏 (π‘”β€˜π‘Ž) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))) ∧ βˆƒπ‘(β„Ž Fn 𝑐 ∧ (𝑐 βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ 𝑐 Pred(𝑅, 𝐴, π‘Ž) βŠ† 𝑐) ∧ βˆ€π‘Ž ∈ 𝑐 (β„Žβ€˜π‘Ž) = (π‘ŽπΊ(β„Ž β†Ύ Pred(𝑅, 𝐴, π‘Ž))))) β†’ ((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)))
628, 27, 61syl2anb 599 . . . . . . . . . 10 ((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) β†’ ((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)))
6362adantr 482 . . . . . . . . 9 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ ((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)))
64 preddowncl 6290 . . . . . . . . 9 (((dom 𝑔 ∩ dom β„Ž) βŠ† 𝐴 ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)Pred(𝑅, 𝐴, π‘Ž) βŠ† (dom 𝑔 ∩ dom β„Ž)) β†’ (π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž) β†’ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž) = Pred(𝑅, 𝐴, π‘Ž)))
6563, 20, 64sylc 65 . . . . . . . 8 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž) = Pred(𝑅, 𝐴, π‘Ž))
6625, 65eqtrid 2785 . . . . . . 7 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ ((dom 𝑔 ∩ dom β„Ž) ∩ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)) = Pred(𝑅, 𝐴, π‘Ž))
6766reseq2d 5941 . . . . . 6 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ (𝑔 β†Ύ ((dom 𝑔 ∩ dom β„Ž) ∩ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž))) = (𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))
6822, 67eqtrid 2785 . . . . 5 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) β†Ύ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)) = (𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž)))
6968oveq2d 7377 . . . 4 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ (π‘ŽπΊ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) β†Ύ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž))) = (π‘ŽπΊ(𝑔 β†Ύ Pred(𝑅, 𝐴, π‘Ž))))
7019, 21, 693eqtr4d 2783 . . 3 (((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) ∧ π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)) β†’ ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž))β€˜π‘Ž) = (π‘ŽπΊ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) β†Ύ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž))))
7170ralrimiva 3140 . 2 ((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) β†’ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž))β€˜π‘Ž) = (π‘ŽπΊ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) β†Ύ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž))))
726, 71jca 513 1 ((𝑔 ∈ 𝐡 ∧ β„Ž ∈ 𝐡) β†’ ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) Fn (dom 𝑔 ∩ dom β„Ž) ∧ βˆ€π‘Ž ∈ (dom 𝑔 ∩ dom β„Ž)((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž))β€˜π‘Ž) = (π‘ŽπΊ((𝑔 β†Ύ (dom 𝑔 ∩ dom β„Ž)) β†Ύ Pred(𝑅, (dom 𝑔 ∩ dom β„Ž), π‘Ž)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  {cab 2710  βˆ€wral 3061   ∩ cin 3913   βŠ† wss 3914  dom cdm 5637   β†Ύ cres 5639  Predcpred 6256   Fn wfn 6495  β€˜cfv 6500  (class class class)co 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-iota 6452  df-fun 6502  df-fn 6503  df-fv 6508  df-ov 7364
This theorem is referenced by:  fprlem1  8235  frrlem15  9701
  Copyright terms: Public domain W3C validator