Step | Hyp | Ref
| Expression |
1 | | frrlem4.1 |
. . . . . 6
β’ π΅ = {π β£ βπ₯(π Fn π₯ β§ (π₯ β π΄ β§ βπ¦ β π₯ Pred(π
, π΄, π¦) β π₯) β§ βπ¦ β π₯ (πβπ¦) = (π¦πΊ(π βΎ Pred(π
, π΄, π¦))))} |
2 | 1 | frrlem2 8222 |
. . . . 5
β’ (π β π΅ β Fun π) |
3 | 2 | funfnd 6536 |
. . . 4
β’ (π β π΅ β π Fn dom π) |
4 | | fnresin1 6630 |
. . . 4
β’ (π Fn dom π β (π βΎ (dom π β© dom β)) Fn (dom π β© dom β)) |
5 | 3, 4 | syl 17 |
. . 3
β’ (π β π΅ β (π βΎ (dom π β© dom β)) Fn (dom π β© dom β)) |
6 | 5 | adantr 482 |
. 2
β’ ((π β π΅ β§ β β π΅) β (π βΎ (dom π β© dom β)) Fn (dom π β© dom β)) |
7 | 1 | frrlem1 8221 |
. . . . . . . 8
β’ π΅ = {π β£ βπ(π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))))} |
8 | 7 | eqabi 2878 |
. . . . . . 7
β’ (π β π΅ β βπ(π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))))) |
9 | | fndm 6609 |
. . . . . . . . . . . 12
β’ (π Fn π β dom π = π) |
10 | 9 | adantr 482 |
. . . . . . . . . . 11
β’ ((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π)) β dom π = π) |
11 | 10 | raleqdv 3312 |
. . . . . . . . . 10
β’ ((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π)) β (βπ β dom π(πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))) β βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))))) |
12 | 11 | biimp3ar 1471 |
. . . . . . . . 9
β’ ((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β βπ β dom π(πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) |
13 | | rsp 3229 |
. . . . . . . . 9
β’
(βπ β
dom π(πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))) β (π β dom π β (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))))) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
β’ ((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β (π β dom π β (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))))) |
15 | 14 | exlimiv 1934 |
. . . . . . 7
β’
(βπ(π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β (π β dom π β (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))))) |
16 | 8, 15 | sylbi 216 |
. . . . . 6
β’ (π β π΅ β (π β dom π β (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π))))) |
17 | | elinel1 4159 |
. . . . . 6
β’ (π β (dom π β© dom β) β π β dom π) |
18 | 16, 17 | impel 507 |
. . . . 5
β’ ((π β π΅ β§ π β (dom π β© dom β)) β (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) |
19 | 18 | adantlr 714 |
. . . 4
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) |
20 | | simpr 486 |
. . . . 5
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β π β (dom π β© dom β)) |
21 | 20 | fvresd 6866 |
. . . 4
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β ((π βΎ (dom π β© dom β))βπ) = (πβπ)) |
22 | | resres 5954 |
. . . . . 6
β’ ((π βΎ (dom π β© dom β)) βΎ Pred(π
, (dom π β© dom β), π)) = (π βΎ ((dom π β© dom β) β© Pred(π
, (dom π β© dom β), π))) |
23 | | predss 6265 |
. . . . . . . . 9
β’
Pred(π
, (dom π β© dom β), π) β (dom π β© dom β) |
24 | | sseqin2 4179 |
. . . . . . . . 9
β’
(Pred(π
, (dom π β© dom β), π) β (dom π β© dom β) β ((dom π β© dom β) β© Pred(π
, (dom π β© dom β), π)) = Pred(π
, (dom π β© dom β), π)) |
25 | 23, 24 | mpbi 229 |
. . . . . . . 8
β’ ((dom
π β© dom β) β© Pred(π
, (dom π β© dom β), π)) = Pred(π
, (dom π β© dom β), π) |
26 | 1 | frrlem1 8221 |
. . . . . . . . . . . 12
β’ π΅ = {β β£ βπ(β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))} |
27 | 26 | eqabi 2878 |
. . . . . . . . . . 11
β’ (β β π΅ β βπ(β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) |
28 | | exdistrv 1960 |
. . . . . . . . . . . 12
β’
(βπβπ((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β (βπ(π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ βπ(β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π)))))) |
29 | | inss1 4192 |
. . . . . . . . . . . . . . 15
β’ (π β© π) β π |
30 | | simpl2l 1227 |
. . . . . . . . . . . . . . 15
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β π β π΄) |
31 | 29, 30 | sstrid 3959 |
. . . . . . . . . . . . . 14
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β (π β© π) β π΄) |
32 | | simp2r 1201 |
. . . . . . . . . . . . . . 15
β’ ((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β βπ β π Pred(π
, π΄, π) β π) |
33 | | simp2r 1201 |
. . . . . . . . . . . . . . 15
β’ ((β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π)))) β βπ β π Pred(π
, π΄, π) β π) |
34 | | nfra1 3266 |
. . . . . . . . . . . . . . . . 17
β’
β²πβπ β π Pred(π
, π΄, π) β π |
35 | | nfra1 3266 |
. . . . . . . . . . . . . . . . 17
β’
β²πβπ β π Pred(π
, π΄, π) β π |
36 | 34, 35 | nfan 1903 |
. . . . . . . . . . . . . . . 16
β’
β²π(βπ β π Pred(π
, π΄, π) β π β§ βπ β π Pred(π
, π΄, π) β π) |
37 | | elinel1 4159 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (π β© π) β π β π) |
38 | | rsp 3229 |
. . . . . . . . . . . . . . . . . . 19
β’
(βπ β
π Pred(π
, π΄, π) β π β (π β π β Pred(π
, π΄, π) β π)) |
39 | 37, 38 | syl5com 31 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π β© π) β (βπ β π Pred(π
, π΄, π) β π β Pred(π
, π΄, π) β π)) |
40 | | elinel2 4160 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (π β© π) β π β π) |
41 | | rsp 3229 |
. . . . . . . . . . . . . . . . . . 19
β’
(βπ β
π Pred(π
, π΄, π) β π β (π β π β Pred(π
, π΄, π) β π)) |
42 | 40, 41 | syl5com 31 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π β© π) β (βπ β π Pred(π
, π΄, π) β π β Pred(π
, π΄, π) β π)) |
43 | 39, 42 | anim12d 610 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π β© π) β ((βπ β π Pred(π
, π΄, π) β π β§ βπ β π Pred(π
, π΄, π) β π) β (Pred(π
, π΄, π) β π β§ Pred(π
, π΄, π) β π))) |
44 | | ssin 4194 |
. . . . . . . . . . . . . . . . . 18
β’
((Pred(π
, π΄, π) β π β§ Pred(π
, π΄, π) β π) β Pred(π
, π΄, π) β (π β© π)) |
45 | 44 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
β’
((Pred(π
, π΄, π) β π β§ Pred(π
, π΄, π) β π) β Pred(π
, π΄, π) β (π β© π)) |
46 | 43, 45 | syl6com 37 |
. . . . . . . . . . . . . . . 16
β’
((βπ β
π Pred(π
, π΄, π) β π β§ βπ β π Pred(π
, π΄, π) β π) β (π β (π β© π) β Pred(π
, π΄, π) β (π β© π))) |
47 | 36, 46 | ralrimi 3239 |
. . . . . . . . . . . . . . 15
β’
((βπ β
π Pred(π
, π΄, π) β π β§ βπ β π Pred(π
, π΄, π) β π) β βπ β (π β© π)Pred(π
, π΄, π) β (π β© π)) |
48 | 32, 33, 47 | syl2an 597 |
. . . . . . . . . . . . . 14
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β βπ β (π β© π)Pred(π
, π΄, π) β (π β© π)) |
49 | | simpl1 1192 |
. . . . . . . . . . . . . . . 16
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β π Fn π) |
50 | 49 | fndmd 6611 |
. . . . . . . . . . . . . . 15
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β dom π = π) |
51 | | simpr1 1195 |
. . . . . . . . . . . . . . . 16
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β β Fn π) |
52 | 51 | fndmd 6611 |
. . . . . . . . . . . . . . 15
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β dom β = π) |
53 | | ineq12 4171 |
. . . . . . . . . . . . . . . . 17
β’ ((dom
π = π β§ dom β = π) β (dom π β© dom β) = (π β© π)) |
54 | 53 | sseq1d 3979 |
. . . . . . . . . . . . . . . 16
β’ ((dom
π = π β§ dom β = π) β ((dom π β© dom β) β π΄ β (π β© π) β π΄)) |
55 | 53 | sseq2d 3980 |
. . . . . . . . . . . . . . . . 17
β’ ((dom
π = π β§ dom β = π) β (Pred(π
, π΄, π) β (dom π β© dom β) β Pred(π
, π΄, π) β (π β© π))) |
56 | 53, 55 | raleqbidv 3318 |
. . . . . . . . . . . . . . . 16
β’ ((dom
π = π β§ dom β = π) β (βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β) β βπ β (π β© π)Pred(π
, π΄, π) β (π β© π))) |
57 | 54, 56 | anbi12d 632 |
. . . . . . . . . . . . . . 15
β’ ((dom
π = π β§ dom β = π) β (((dom π β© dom β) β π΄ β§ βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β)) β ((π β© π) β π΄ β§ βπ β (π β© π)Pred(π
, π΄, π) β (π β© π)))) |
58 | 50, 52, 57 | syl2anc 585 |
. . . . . . . . . . . . . 14
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β (((dom π β© dom β) β π΄ β§ βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β)) β ((π β© π) β π΄ β§ βπ β (π β© π)Pred(π
, π΄, π) β (π β© π)))) |
59 | 31, 48, 58 | mpbir2and 712 |
. . . . . . . . . . . . 13
β’ (((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β ((dom π β© dom β) β π΄ β§ βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β))) |
60 | 59 | exlimivv 1936 |
. . . . . . . . . . . 12
β’
(βπβπ((π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ (β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β ((dom π β© dom β) β π΄ β§ βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β))) |
61 | 28, 60 | sylbir 234 |
. . . . . . . . . . 11
β’
((βπ(π Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (πβπ) = (ππΊ(π βΎ Pred(π
, π΄, π)))) β§ βπ(β Fn π β§ (π β π΄ β§ βπ β π Pred(π
, π΄, π) β π) β§ βπ β π (ββπ) = (ππΊ(β βΎ Pred(π
, π΄, π))))) β ((dom π β© dom β) β π΄ β§ βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β))) |
62 | 8, 27, 61 | syl2anb 599 |
. . . . . . . . . 10
β’ ((π β π΅ β§ β β π΅) β ((dom π β© dom β) β π΄ β§ βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β))) |
63 | 62 | adantr 482 |
. . . . . . . . 9
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β ((dom π β© dom β) β π΄ β§ βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β))) |
64 | | preddowncl 6290 |
. . . . . . . . 9
β’ (((dom
π β© dom β) β π΄ β§ βπ β (dom π β© dom β)Pred(π
, π΄, π) β (dom π β© dom β)) β (π β (dom π β© dom β) β Pred(π
, (dom π β© dom β), π) = Pred(π
, π΄, π))) |
65 | 63, 20, 64 | sylc 65 |
. . . . . . . 8
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β Pred(π
, (dom π β© dom β), π) = Pred(π
, π΄, π)) |
66 | 25, 65 | eqtrid 2785 |
. . . . . . 7
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β ((dom π β© dom β) β© Pred(π
, (dom π β© dom β), π)) = Pred(π
, π΄, π)) |
67 | 66 | reseq2d 5941 |
. . . . . 6
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β (π βΎ ((dom π β© dom β) β© Pred(π
, (dom π β© dom β), π))) = (π βΎ Pred(π
, π΄, π))) |
68 | 22, 67 | eqtrid 2785 |
. . . . 5
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β ((π βΎ (dom π β© dom β)) βΎ Pred(π
, (dom π β© dom β), π)) = (π βΎ Pred(π
, π΄, π))) |
69 | 68 | oveq2d 7377 |
. . . 4
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β (ππΊ((π βΎ (dom π β© dom β)) βΎ Pred(π
, (dom π β© dom β), π))) = (ππΊ(π βΎ Pred(π
, π΄, π)))) |
70 | 19, 21, 69 | 3eqtr4d 2783 |
. . 3
β’ (((π β π΅ β§ β β π΅) β§ π β (dom π β© dom β)) β ((π βΎ (dom π β© dom β))βπ) = (ππΊ((π βΎ (dom π β© dom β)) βΎ Pred(π
, (dom π β© dom β), π)))) |
71 | 70 | ralrimiva 3140 |
. 2
β’ ((π β π΅ β§ β β π΅) β βπ β (dom π β© dom β)((π βΎ (dom π β© dom β))βπ) = (ππΊ((π βΎ (dom π β© dom β)) βΎ Pred(π
, (dom π β© dom β), π)))) |
72 | 6, 71 | jca 513 |
1
β’ ((π β π΅ β§ β β π΅) β ((π βΎ (dom π β© dom β)) Fn (dom π β© dom β) β§ βπ β (dom π β© dom β)((π βΎ (dom π β© dom β))βπ) = (ππΊ((π βΎ (dom π β© dom β)) βΎ Pred(π
, (dom π β© dom β), π))))) |