Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem14 Structured version   Visualization version   GIF version

Theorem frrlem14 33136
Description: Lemma for founded recursion. Finally, we tie all these threads together and show that dom 𝐹 = 𝐴 when given the right 𝑆. Specifically, we prove that there can be no 𝑅-minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
frrlem13.8 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
frrlem13.9 ((𝜑𝑧𝐴) → 𝑆𝐴)
frrlem14.10 ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
Assertion
Ref Expression
frrlem14 (𝜑 → dom 𝐹 = 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵   𝑤,𝐶   𝑤,𝐹   𝜑,𝑤   𝑤,𝑆   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem14
StepHypRef Expression
1 frrlem11.1 . . . 4 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem11.2 . . . 4 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem7 33129 . . 3 dom 𝐹𝐴
43a1i 11 . 2 (𝜑 → dom 𝐹𝐴)
5 eldifn 4104 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
65adantl 484 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ 𝑧 ∈ dom 𝐹)
7 frrlem11.3 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
8 frrlem11.4 . . . . . . . . . . . 12 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
9 frrlem12.5 . . . . . . . . . . . 12 (𝜑𝑅 Fr 𝐴)
10 frrlem12.6 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
11 frrlem12.7 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
12 frrlem13.8 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
13 frrlem13.9 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑆𝐴)
141, 2, 7, 8, 9, 10, 11, 12, 13frrlem13 33135 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
15 elssuni 4868 . . . . . . . . . . 11 (𝐶𝐵𝐶 𝐵)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 𝐵)
171, 2frrlem5 33127 . . . . . . . . . 10 𝐹 = 𝐵
1816, 17sseqtrrdi 4018 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐹)
19 dmss 5771 . . . . . . . . 9 (𝐶𝐹 → dom 𝐶 ⊆ dom 𝐹)
2018, 19syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → dom 𝐶 ⊆ dom 𝐹)
21 ssun2 4149 . . . . . . . . . . 11 {𝑧} ⊆ (dom (𝐹𝑆) ∪ {𝑧})
22 vsnid 4602 . . . . . . . . . . 11 𝑧 ∈ {𝑧}
2321, 22sselii 3964 . . . . . . . . . 10 𝑧 ∈ (dom (𝐹𝑆) ∪ {𝑧})
248dmeqi 5773 . . . . . . . . . . 11 dom 𝐶 = dom ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
25 dmun 5779 . . . . . . . . . . 11 dom ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom (𝐹𝑆) ∪ dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
26 ovex 7189 . . . . . . . . . . . . 13 (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
2726dmsnop 6073 . . . . . . . . . . . 12 dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧}
2827uneq2i 4136 . . . . . . . . . . 11 (dom (𝐹𝑆) ∪ dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom (𝐹𝑆) ∪ {𝑧})
2924, 25, 283eqtri 2848 . . . . . . . . . 10 dom 𝐶 = (dom (𝐹𝑆) ∪ {𝑧})
3023, 29eleqtrri 2912 . . . . . . . . 9 𝑧 ∈ dom 𝐶
3130a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧 ∈ dom 𝐶)
3220, 31sseldd 3968 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧 ∈ dom 𝐹)
3332expr 459 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → 𝑧 ∈ dom 𝐹))
346, 33mtod 200 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3534nrexdv 3270 . . . 4 (𝜑 → ¬ ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
36 df-ne 3017 . . . . . 6 ((𝐴 ∖ dom 𝐹) ≠ ∅ ↔ ¬ (𝐴 ∖ dom 𝐹) = ∅)
37 frrlem14.10 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3836, 37sylan2br 596 . . . . 5 ((𝜑 ∧ ¬ (𝐴 ∖ dom 𝐹) = ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3938ex 415 . . . 4 (𝜑 → (¬ (𝐴 ∖ dom 𝐹) = ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅))
4035, 39mt3d 150 . . 3 (𝜑 → (𝐴 ∖ dom 𝐹) = ∅)
41 ssdif0 4323 . . 3 (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∖ dom 𝐹) = ∅)
4240, 41sylibr 236 . 2 (𝜑𝐴 ⊆ dom 𝐹)
434, 42eqssd 3984 1 (𝜑 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  cun 3934  wss 3936  c0 4291  {csn 4567  cop 4573   cuni 4838   class class class wbr 5066   Fr wfr 5511  dom cdm 5555  cres 5557  Predcpred 6147   Fn wfn 6350  cfv 6355  (class class class)co 7156  frecscfrecs 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-fr 5514  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-frecs 33118
This theorem is referenced by:  fpr1  33139  frr1  33144
  Copyright terms: Public domain W3C validator