MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem14 Structured version   Visualization version   GIF version

Theorem frrlem14 8115
Description: Lemma for well-founded recursion. Finally, we tie all these threads together and show that dom 𝐹 = 𝐴 when given the right 𝑆. Specifically, we prove that there can be no 𝑅-minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
frrlem13.8 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
frrlem13.9 ((𝜑𝑧𝐴) → 𝑆𝐴)
frrlem14.10 ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
Assertion
Ref Expression
frrlem14 (𝜑 → dom 𝐹 = 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵   𝑤,𝐶   𝑤,𝐹   𝜑,𝑤   𝑤,𝑆   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem14
StepHypRef Expression
1 frrlem11.1 . . . 4 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem11.2 . . . 4 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem7 8108 . . 3 dom 𝐹𝐴
43a1i 11 . 2 (𝜑 → dom 𝐹𝐴)
5 eldifn 4062 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
65adantl 482 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ 𝑧 ∈ dom 𝐹)
7 frrlem11.3 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
8 frrlem11.4 . . . . . . . . . . . 12 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
9 frrlem12.5 . . . . . . . . . . . 12 (𝜑𝑅 Fr 𝐴)
10 frrlem12.6 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
11 frrlem12.7 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
12 frrlem13.8 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
13 frrlem13.9 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑆𝐴)
141, 2, 7, 8, 9, 10, 11, 12, 13frrlem13 8114 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
15 elssuni 4871 . . . . . . . . . . 11 (𝐶𝐵𝐶 𝐵)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 𝐵)
171, 2frrlem5 8106 . . . . . . . . . 10 𝐹 = 𝐵
1816, 17sseqtrrdi 3972 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐹)
19 dmss 5811 . . . . . . . . 9 (𝐶𝐹 → dom 𝐶 ⊆ dom 𝐹)
2018, 19syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → dom 𝐶 ⊆ dom 𝐹)
21 ssun2 4107 . . . . . . . . . . 11 {𝑧} ⊆ (dom (𝐹𝑆) ∪ {𝑧})
22 vsnid 4598 . . . . . . . . . . 11 𝑧 ∈ {𝑧}
2321, 22sselii 3918 . . . . . . . . . 10 𝑧 ∈ (dom (𝐹𝑆) ∪ {𝑧})
248dmeqi 5813 . . . . . . . . . . 11 dom 𝐶 = dom ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
25 dmun 5819 . . . . . . . . . . 11 dom ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom (𝐹𝑆) ∪ dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
26 ovex 7308 . . . . . . . . . . . . 13 (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
2726dmsnop 6119 . . . . . . . . . . . 12 dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧}
2827uneq2i 4094 . . . . . . . . . . 11 (dom (𝐹𝑆) ∪ dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom (𝐹𝑆) ∪ {𝑧})
2924, 25, 283eqtri 2770 . . . . . . . . . 10 dom 𝐶 = (dom (𝐹𝑆) ∪ {𝑧})
3023, 29eleqtrri 2838 . . . . . . . . 9 𝑧 ∈ dom 𝐶
3130a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧 ∈ dom 𝐶)
3220, 31sseldd 3922 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧 ∈ dom 𝐹)
3332expr 457 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → 𝑧 ∈ dom 𝐹))
346, 33mtod 197 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3534nrexdv 3198 . . . 4 (𝜑 → ¬ ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
36 df-ne 2944 . . . . . 6 ((𝐴 ∖ dom 𝐹) ≠ ∅ ↔ ¬ (𝐴 ∖ dom 𝐹) = ∅)
37 frrlem14.10 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3836, 37sylan2br 595 . . . . 5 ((𝜑 ∧ ¬ (𝐴 ∖ dom 𝐹) = ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3938ex 413 . . . 4 (𝜑 → (¬ (𝐴 ∖ dom 𝐹) = ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅))
4035, 39mt3d 148 . . 3 (𝜑 → (𝐴 ∖ dom 𝐹) = ∅)
41 ssdif0 4297 . . 3 (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∖ dom 𝐹) = ∅)
4240, 41sylibr 233 . 2 (𝜑𝐴 ⊆ dom 𝐹)
434, 42eqssd 3938 1 (𝜑 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074   Fr wfr 5541  dom cdm 5589  cres 5591  Predcpred 6201   Fn wfn 6428  cfv 6433  (class class class)co 7275  frecscfrecs 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-fr 5544  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-frecs 8097
This theorem is referenced by:  fpr1  8119  frr1  9517
  Copyright terms: Public domain W3C validator