MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem14 Structured version   Visualization version   GIF version

Theorem frrlem14 8340
Description: Lemma for well-founded recursion. Finally, we tie all these threads together and show that dom 𝐹 = 𝐴 when given the right 𝑆. Specifically, we prove that there can be no 𝑅-minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
frrlem13.8 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
frrlem13.9 ((𝜑𝑧𝐴) → 𝑆𝐴)
frrlem14.10 ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
Assertion
Ref Expression
frrlem14 (𝜑 → dom 𝐹 = 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵   𝑤,𝐶   𝑤,𝐹   𝜑,𝑤   𝑤,𝑆   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem14
StepHypRef Expression
1 frrlem11.1 . . . 4 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem11.2 . . . 4 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem7 8333 . . 3 dom 𝐹𝐴
43a1i 11 . 2 (𝜑 → dom 𝐹𝐴)
5 eldifn 4155 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
65adantl 481 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ 𝑧 ∈ dom 𝐹)
7 frrlem11.3 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
8 frrlem11.4 . . . . . . . . . . . 12 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
9 frrlem12.5 . . . . . . . . . . . 12 (𝜑𝑅 Fr 𝐴)
10 frrlem12.6 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
11 frrlem12.7 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
12 frrlem13.8 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
13 frrlem13.9 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑆𝐴)
141, 2, 7, 8, 9, 10, 11, 12, 13frrlem13 8339 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
15 elssuni 4961 . . . . . . . . . . 11 (𝐶𝐵𝐶 𝐵)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 𝐵)
171, 2frrlem5 8331 . . . . . . . . . 10 𝐹 = 𝐵
1816, 17sseqtrrdi 4060 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐹)
19 dmss 5927 . . . . . . . . 9 (𝐶𝐹 → dom 𝐶 ⊆ dom 𝐹)
2018, 19syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → dom 𝐶 ⊆ dom 𝐹)
21 ssun2 4202 . . . . . . . . . . 11 {𝑧} ⊆ (dom (𝐹𝑆) ∪ {𝑧})
22 vsnid 4685 . . . . . . . . . . 11 𝑧 ∈ {𝑧}
2321, 22sselii 4005 . . . . . . . . . 10 𝑧 ∈ (dom (𝐹𝑆) ∪ {𝑧})
248dmeqi 5929 . . . . . . . . . . 11 dom 𝐶 = dom ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
25 dmun 5935 . . . . . . . . . . 11 dom ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom (𝐹𝑆) ∪ dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
26 ovex 7481 . . . . . . . . . . . . 13 (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
2726dmsnop 6247 . . . . . . . . . . . 12 dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧}
2827uneq2i 4188 . . . . . . . . . . 11 (dom (𝐹𝑆) ∪ dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom (𝐹𝑆) ∪ {𝑧})
2924, 25, 283eqtri 2772 . . . . . . . . . 10 dom 𝐶 = (dom (𝐹𝑆) ∪ {𝑧})
3023, 29eleqtrri 2843 . . . . . . . . 9 𝑧 ∈ dom 𝐶
3130a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧 ∈ dom 𝐶)
3220, 31sseldd 4009 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧 ∈ dom 𝐹)
3332expr 456 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → 𝑧 ∈ dom 𝐹))
346, 33mtod 198 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3534nrexdv 3155 . . . 4 (𝜑 → ¬ ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
36 df-ne 2947 . . . . . 6 ((𝐴 ∖ dom 𝐹) ≠ ∅ ↔ ¬ (𝐴 ∖ dom 𝐹) = ∅)
37 frrlem14.10 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3836, 37sylan2br 594 . . . . 5 ((𝜑 ∧ ¬ (𝐴 ∖ dom 𝐹) = ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3938ex 412 . . . 4 (𝜑 → (¬ (𝐴 ∖ dom 𝐹) = ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅))
4035, 39mt3d 148 . . 3 (𝜑 → (𝐴 ∖ dom 𝐹) = ∅)
41 ssdif0 4389 . . 3 (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∖ dom 𝐹) = ∅)
4240, 41sylibr 234 . 2 (𝜑𝐴 ⊆ dom 𝐹)
434, 42eqssd 4026 1 (𝜑 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  {csn 4648  cop 4654   cuni 4931   class class class wbr 5166   Fr wfr 5649  dom cdm 5700  cres 5702  Predcpred 6331   Fn wfn 6568  cfv 6573  (class class class)co 7448  frecscfrecs 8321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-fr 5652  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-frecs 8322
This theorem is referenced by:  fpr1  8344  frr1  9828
  Copyright terms: Public domain W3C validator