MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem14 Structured version   Visualization version   GIF version

Theorem frrlem14 8234
Description: Lemma for well-founded recursion. Finally, we tie all these threads together and show that dom 𝐹 = 𝐴 when given the right 𝑆. Specifically, we prove that there can be no 𝑅-minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 7-Dec-2022.)
Hypotheses
Ref Expression
frrlem11.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem11.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem11.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
frrlem11.4 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
frrlem12.5 (𝜑𝑅 Fr 𝐴)
frrlem12.6 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
frrlem12.7 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
frrlem13.8 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
frrlem13.9 ((𝜑𝑧𝐴) → 𝑆𝐴)
frrlem14.10 ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
Assertion
Ref Expression
frrlem14 (𝜑 → dom 𝐹 = 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑅,𝑓,𝑥,𝑦,𝑧   𝐵,𝑔,,𝑧   𝑥,𝐹,𝑢,𝑣,𝑧   𝜑,𝑓,𝑧   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣   𝐴,,𝑤,𝑓,𝑦,𝑥   𝑤,𝐺   𝑤,𝑅   𝑦,𝐹   𝑥,𝐵   𝑤,𝐶   𝑤,𝐹   𝜑,𝑤   𝑤,𝑆   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔)   𝐵(𝑦,𝑤,𝑣,𝑢,𝑓)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢,𝑔,)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem14
StepHypRef Expression
1 frrlem11.1 . . . 4 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem11.2 . . . 4 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem7 8227 . . 3 dom 𝐹𝐴
43a1i 11 . 2 (𝜑 → dom 𝐹𝐴)
5 eldifn 4091 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
65adantl 483 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ 𝑧 ∈ dom 𝐹)
7 frrlem11.3 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
8 frrlem11.4 . . . . . . . . . . . 12 𝐶 = ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
9 frrlem12.5 . . . . . . . . . . . 12 (𝜑𝑅 Fr 𝐴)
10 frrlem12.6 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆)
11 frrlem12.7 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → ∀𝑤𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆)
12 frrlem13.8 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑆 ∈ V)
13 frrlem13.9 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑆𝐴)
141, 2, 7, 8, 9, 10, 11, 12, 13frrlem13 8233 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐵)
15 elssuni 4902 . . . . . . . . . . 11 (𝐶𝐵𝐶 𝐵)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 𝐵)
171, 2frrlem5 8225 . . . . . . . . . 10 𝐹 = 𝐵
1816, 17sseqtrrdi 3999 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶𝐹)
19 dmss 5862 . . . . . . . . 9 (𝐶𝐹 → dom 𝐶 ⊆ dom 𝐹)
2018, 19syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → dom 𝐶 ⊆ dom 𝐹)
21 ssun2 4137 . . . . . . . . . . 11 {𝑧} ⊆ (dom (𝐹𝑆) ∪ {𝑧})
22 vsnid 4627 . . . . . . . . . . 11 𝑧 ∈ {𝑧}
2321, 22sselii 3945 . . . . . . . . . 10 𝑧 ∈ (dom (𝐹𝑆) ∪ {𝑧})
248dmeqi 5864 . . . . . . . . . . 11 dom 𝐶 = dom ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
25 dmun 5870 . . . . . . . . . . 11 dom ((𝐹𝑆) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom (𝐹𝑆) ∪ dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
26 ovex 7394 . . . . . . . . . . . . 13 (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
2726dmsnop 6172 . . . . . . . . . . . 12 dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧}
2827uneq2i 4124 . . . . . . . . . . 11 (dom (𝐹𝑆) ∪ dom {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom (𝐹𝑆) ∪ {𝑧})
2924, 25, 283eqtri 2765 . . . . . . . . . 10 dom 𝐶 = (dom (𝐹𝑆) ∪ {𝑧})
3023, 29eleqtrri 2833 . . . . . . . . 9 𝑧 ∈ dom 𝐶
3130a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧 ∈ dom 𝐶)
3220, 31sseldd 3949 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝑧 ∈ dom 𝐹)
3332expr 458 . . . . . 6 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → 𝑧 ∈ dom 𝐹))
346, 33mtod 197 . . . . 5 ((𝜑𝑧 ∈ (𝐴 ∖ dom 𝐹)) → ¬ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3534nrexdv 3143 . . . 4 (𝜑 → ¬ ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
36 df-ne 2941 . . . . . 6 ((𝐴 ∖ dom 𝐹) ≠ ∅ ↔ ¬ (𝐴 ∖ dom 𝐹) = ∅)
37 frrlem14.10 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3836, 37sylan2br 596 . . . . 5 ((𝜑 ∧ ¬ (𝐴 ∖ dom 𝐹) = ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3938ex 414 . . . 4 (𝜑 → (¬ (𝐴 ∖ dom 𝐹) = ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅))
4035, 39mt3d 148 . . 3 (𝜑 → (𝐴 ∖ dom 𝐹) = ∅)
41 ssdif0 4327 . . 3 (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∖ dom 𝐹) = ∅)
4240, 41sylibr 233 . 2 (𝜑𝐴 ⊆ dom 𝐹)
434, 42eqssd 3965 1 (𝜑 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wne 2940  wral 3061  wrex 3070  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4286  {csn 4590  cop 4596   cuni 4869   class class class wbr 5109   Fr wfr 5589  dom cdm 5637  cres 5639  Predcpred 6256   Fn wfn 6495  cfv 6500  (class class class)co 7361  frecscfrecs 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-fr 5592  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-frecs 8216
This theorem is referenced by:  fpr1  8238  frr1  9703
  Copyright terms: Public domain W3C validator