Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem6 Structured version   Visualization version   GIF version

Theorem frrlem6 32382
Description: Lemma for founded recursion. The union of all acceptable functions is a relationship. (Contributed by Paul Chapman, 21-Apr-2012.) (Revised by Scott Fenton, 23-Dec-2021.)
Hypotheses
Ref Expression
frrlem6.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem6.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem6 Rel 𝐹
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem frrlem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 reluni 5491 . . 3 (Rel 𝐵 ↔ ∀𝑔𝐵 Rel 𝑔)
2 frrlem6.1 . . . . 5 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
32frrlem2 32374 . . . 4 (𝑔𝐵 → Fun 𝑔)
4 funrel 6154 . . . 4 (Fun 𝑔 → Rel 𝑔)
53, 4syl 17 . . 3 (𝑔𝐵 → Rel 𝑔)
61, 5mprgbir 3109 . 2 Rel 𝐵
7 frrlem6.2 . . . . 5 𝐹 = frecs(𝑅, 𝐴, 𝐺)
8 df-frecs 32369 . . . . 5 frecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
97, 8eqtri 2802 . . . 4 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
102unieqi 4682 . . . 4 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
119, 10eqtr4i 2805 . . 3 𝐹 = 𝐵
1211releqi 5452 . 2 (Rel 𝐹 ↔ Rel 𝐵)
136, 12mpbir 223 1 Rel 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 386  w3a 1071   = wceq 1601  wex 1823  wcel 2107  {cab 2763  wral 3090  wss 3792   cuni 4673  cres 5359  Rel wrel 5362  Predcpred 5934  Fun wfun 6131   Fn wfn 6132  cfv 6137  (class class class)co 6924  frecscfrecs 32368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-iota 6101  df-fun 6139  df-fn 6140  df-fv 6145  df-ov 6927  df-frecs 32369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator