| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frrlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for well-founded recursion. The well-founded recursion generator is a relation. (Contributed by Scott Fenton, 27-Aug-2022.) |
| Ref | Expression |
|---|---|
| frrlem5.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| frrlem5.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| frrlem6 | ⊢ Rel 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem5.1 | . . . . 5 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
| 2 | frrlem5.2 | . . . . 5 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
| 3 | 1, 2 | frrlem5 8294 | . . . 4 ⊢ 𝐹 = ∪ 𝐵 |
| 4 | 3 | releqi 5761 | . . 3 ⊢ (Rel 𝐹 ↔ Rel ∪ 𝐵) |
| 5 | reluni 5802 | . . 3 ⊢ (Rel ∪ 𝐵 ↔ ∀𝑔 ∈ 𝐵 Rel 𝑔) | |
| 6 | 4, 5 | bitri 275 | . 2 ⊢ (Rel 𝐹 ↔ ∀𝑔 ∈ 𝐵 Rel 𝑔) |
| 7 | 1 | frrlem2 8291 | . . 3 ⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) |
| 8 | funrel 6558 | . . 3 ⊢ (Fun 𝑔 → Rel 𝑔) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝑔 ∈ 𝐵 → Rel 𝑔) |
| 10 | 6, 9 | mprgbir 3059 | 1 ⊢ Rel 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∀wral 3052 ⊆ wss 3931 ∪ cuni 4888 ↾ cres 5661 Rel wrel 5664 Predcpred 6294 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 frecscfrecs 8284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ov 7413 df-frecs 8285 |
| This theorem is referenced by: frrlem9 8298 frrrel 8310 |
| Copyright terms: Public domain | W3C validator |