MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem6 Structured version   Visualization version   GIF version

Theorem frrlem6 8224
Description: Lemma for well-founded recursion. The well-founded recursion generator is a relation. (Contributed by Scott Fenton, 27-Aug-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem6 Rel 𝐹
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem frrlem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 frrlem5.1 . . . . 5 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem5.2 . . . . 5 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem5 8223 . . . 4 𝐹 = 𝐵
43releqi 5721 . . 3 (Rel 𝐹 ↔ Rel 𝐵)
5 reluni 5761 . . 3 (Rel 𝐵 ↔ ∀𝑔𝐵 Rel 𝑔)
64, 5bitri 275 . 2 (Rel 𝐹 ↔ ∀𝑔𝐵 Rel 𝑔)
71frrlem2 8220 . . 3 (𝑔𝐵 → Fun 𝑔)
8 funrel 6499 . . 3 (Fun 𝑔 → Rel 𝑔)
97, 8syl 17 . 2 (𝑔𝐵 → Rel 𝑔)
106, 9mprgbir 3051 1 Rel 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wss 3903   cuni 4858  cres 5621  Rel wrel 5624  Predcpred 6248  Fun wfun 6476   Fn wfn 6477  cfv 6482  (class class class)co 7349  frecscfrecs 8213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352  df-frecs 8214
This theorem is referenced by:  frrlem9  8227  frrrel  8239
  Copyright terms: Public domain W3C validator