Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrlem6 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. The well-founded recursion generator is a relationship. (Contributed by Scott Fenton, 27-Aug-2022.) |
Ref | Expression |
---|---|
frrlem5.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem5.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
frrlem6 | ⊢ Rel 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem5.1 | . . . . 5 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
2 | frrlem5.2 | . . . . 5 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
3 | 1, 2 | frrlem5 8077 | . . . 4 ⊢ 𝐹 = ∪ 𝐵 |
4 | 3 | releqi 5678 | . . 3 ⊢ (Rel 𝐹 ↔ Rel ∪ 𝐵) |
5 | reluni 5717 | . . 3 ⊢ (Rel ∪ 𝐵 ↔ ∀𝑔 ∈ 𝐵 Rel 𝑔) | |
6 | 4, 5 | bitri 274 | . 2 ⊢ (Rel 𝐹 ↔ ∀𝑔 ∈ 𝐵 Rel 𝑔) |
7 | 1 | frrlem2 8074 | . . 3 ⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) |
8 | funrel 6435 | . . 3 ⊢ (Fun 𝑔 → Rel 𝑔) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝑔 ∈ 𝐵 → Rel 𝑔) |
10 | 6, 9 | mprgbir 3078 | 1 ⊢ Rel 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 ⊆ wss 3883 ∪ cuni 4836 ↾ cres 5582 Rel wrel 5585 Predcpred 6190 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 frecscfrecs 8067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 df-frecs 8068 |
This theorem is referenced by: frrlem9 8081 frrrel 8093 |
Copyright terms: Public domain | W3C validator |