Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem9 Structured version   Visualization version   GIF version

Theorem frrlem9 33397
Description: Lemma for founded recursion. Show that the founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial ordering or Infinity. (Contributed by Scott Fenton, 27-Aug-2022.)
Hypotheses
Ref Expression
frrlem9.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem9.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem9.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Assertion
Ref Expression
frrlem9 (𝜑 → Fun 𝐹)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝐵,𝑔,   𝑥,𝐹,𝑢,𝑣   𝜑,𝑓   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔,)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓)   𝑅(𝑣,𝑢,𝑔,)   𝐹(𝑦,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem9
StepHypRef Expression
1 eluni2 4805 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ 𝐵 ↔ ∃𝑔𝐵𝑥, 𝑢⟩ ∈ 𝑔)
2 df-br 5036 . . . . . . . . 9 (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐹)
3 frrlem9.1 . . . . . . . . . . 11 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem9.2 . . . . . . . . . . 11 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 33393 . . . . . . . . . 10 𝐹 = 𝐵
65eleq2i 2843 . . . . . . . . 9 (⟨𝑥, 𝑢⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐵)
72, 6bitri 278 . . . . . . . 8 (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐵)
8 df-br 5036 . . . . . . . . 9 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
98rexbii 3175 . . . . . . . 8 (∃𝑔𝐵 𝑥𝑔𝑢 ↔ ∃𝑔𝐵𝑥, 𝑢⟩ ∈ 𝑔)
101, 7, 93bitr4i 306 . . . . . . 7 (𝑥𝐹𝑢 ↔ ∃𝑔𝐵 𝑥𝑔𝑢)
11 eluni2 4805 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ 𝐵 ↔ ∃𝐵𝑥, 𝑣⟩ ∈ )
12 df-br 5036 . . . . . . . . 9 (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐹)
135eleq2i 2843 . . . . . . . . 9 (⟨𝑥, 𝑣⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐵)
1412, 13bitri 278 . . . . . . . 8 (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐵)
15 df-br 5036 . . . . . . . . 9 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1615rexbii 3175 . . . . . . . 8 (∃𝐵 𝑥𝑣 ↔ ∃𝐵𝑥, 𝑣⟩ ∈ )
1711, 14, 163bitr4i 306 . . . . . . 7 (𝑥𝐹𝑣 ↔ ∃𝐵 𝑥𝑣)
1810, 17anbi12i 629 . . . . . 6 ((𝑥𝐹𝑢𝑥𝐹𝑣) ↔ (∃𝑔𝐵 𝑥𝑔𝑢 ∧ ∃𝐵 𝑥𝑣))
19 reeanv 3285 . . . . . 6 (∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣) ↔ (∃𝑔𝐵 𝑥𝑔𝑢 ∧ ∃𝐵 𝑥𝑣))
2018, 19bitr4i 281 . . . . 5 ((𝑥𝐹𝑢𝑥𝐹𝑣) ↔ ∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣))
21 frrlem9.3 . . . . . 6 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
2221rexlimdvva 3218 . . . . 5 (𝜑 → (∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
2320, 22syl5bi 245 . . . 4 (𝜑 → ((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2423alrimiv 1928 . . 3 (𝜑 → ∀𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2524alrimivv 1929 . 2 (𝜑 → ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
263, 4frrlem6 33394 . . 3 Rel 𝐹
27 dffun2 6349 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣)))
2826, 27mpbiran 708 . 2 (Fun 𝐹 ↔ ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2925, 28sylibr 237 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  {cab 2735  wral 3070  wrex 3071  wss 3860  cop 4531   cuni 4801   class class class wbr 5035  cres 5529  Rel wrel 5532  Predcpred 6129  Fun wfun 6333   Fn wfn 6334  cfv 6339  (class class class)co 7155  frecscfrecs 33383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-iota 6298  df-fun 6341  df-fn 6342  df-fv 6347  df-ov 7158  df-frecs 33384
This theorem is referenced by:  frrlem10  33398  frrlem11  33399  frrlem12  33400  frrlem13  33401  fpr1  33405  frr1  33410
  Copyright terms: Public domain W3C validator