MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem9 Structured version   Visualization version   GIF version

Theorem frrlem9 8335
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022.)
Hypotheses
Ref Expression
frrlem9.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem9.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem9.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Assertion
Ref Expression
frrlem9 (𝜑 → Fun 𝐹)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝐵,𝑔,   𝑥,𝐹,𝑢,𝑣   𝜑,𝑓   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔,)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓)   𝑅(𝑣,𝑢,𝑔,)   𝐹(𝑦,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem9
StepHypRef Expression
1 eluni2 4935 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ 𝐵 ↔ ∃𝑔𝐵𝑥, 𝑢⟩ ∈ 𝑔)
2 df-br 5167 . . . . . . . . 9 (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐹)
3 frrlem9.1 . . . . . . . . . . 11 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem9.2 . . . . . . . . . . 11 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 8331 . . . . . . . . . 10 𝐹 = 𝐵
65eleq2i 2836 . . . . . . . . 9 (⟨𝑥, 𝑢⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐵)
72, 6bitri 275 . . . . . . . 8 (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐵)
8 df-br 5167 . . . . . . . . 9 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
98rexbii 3100 . . . . . . . 8 (∃𝑔𝐵 𝑥𝑔𝑢 ↔ ∃𝑔𝐵𝑥, 𝑢⟩ ∈ 𝑔)
101, 7, 93bitr4i 303 . . . . . . 7 (𝑥𝐹𝑢 ↔ ∃𝑔𝐵 𝑥𝑔𝑢)
11 eluni2 4935 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ 𝐵 ↔ ∃𝐵𝑥, 𝑣⟩ ∈ )
12 df-br 5167 . . . . . . . . 9 (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐹)
135eleq2i 2836 . . . . . . . . 9 (⟨𝑥, 𝑣⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐵)
1412, 13bitri 275 . . . . . . . 8 (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐵)
15 df-br 5167 . . . . . . . . 9 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1615rexbii 3100 . . . . . . . 8 (∃𝐵 𝑥𝑣 ↔ ∃𝐵𝑥, 𝑣⟩ ∈ )
1711, 14, 163bitr4i 303 . . . . . . 7 (𝑥𝐹𝑣 ↔ ∃𝐵 𝑥𝑣)
1810, 17anbi12i 627 . . . . . 6 ((𝑥𝐹𝑢𝑥𝐹𝑣) ↔ (∃𝑔𝐵 𝑥𝑔𝑢 ∧ ∃𝐵 𝑥𝑣))
19 reeanv 3235 . . . . . 6 (∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣) ↔ (∃𝑔𝐵 𝑥𝑔𝑢 ∧ ∃𝐵 𝑥𝑣))
2018, 19bitr4i 278 . . . . 5 ((𝑥𝐹𝑢𝑥𝐹𝑣) ↔ ∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣))
21 frrlem9.3 . . . . . 6 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
2221rexlimdvva 3219 . . . . 5 (𝜑 → (∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
2320, 22biimtrid 242 . . . 4 (𝜑 → ((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2423alrimiv 1926 . . 3 (𝜑 → ∀𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2524alrimivv 1927 . 2 (𝜑 → ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
263, 4frrlem6 8332 . . 3 Rel 𝐹
27 dffun2 6583 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣)))
2826, 27mpbiran 708 . 2 (Fun 𝐹 ↔ ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2925, 28sylibr 234 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  wss 3976  cop 4654   cuni 4931   class class class wbr 5166  cres 5702  Rel wrel 5705  Predcpred 6331  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448  frecscfrecs 8321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ov 7451  df-frecs 8322
This theorem is referenced by:  frrlem10  8336  frrlem11  8337  frrlem12  8338  frrlem13  8339  fpr1  8344  fprfung  8350  frr1  9828
  Copyright terms: Public domain W3C validator