![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrlem9 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022.) |
Ref | Expression |
---|---|
frrlem9.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem9.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
frrlem9.3 | ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
Ref | Expression |
---|---|
frrlem9 | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4912 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑢⟩ ∈ ∪ 𝐵 ↔ ∃𝑔 ∈ 𝐵 ⟨𝑥, 𝑢⟩ ∈ 𝑔) | |
2 | df-br 5149 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐹) | |
3 | frrlem9.1 | . . . . . . . . . . 11 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
4 | frrlem9.2 | . . . . . . . . . . 11 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
5 | 3, 4 | frrlem5 8274 | . . . . . . . . . 10 ⊢ 𝐹 = ∪ 𝐵 |
6 | 5 | eleq2i 2825 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑢⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑢⟩ ∈ ∪ 𝐵) |
7 | 2, 6 | bitri 274 | . . . . . . . 8 ⊢ (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ ∪ 𝐵) |
8 | df-br 5149 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔) | |
9 | 8 | rexbii 3094 | . . . . . . . 8 ⊢ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ↔ ∃𝑔 ∈ 𝐵 ⟨𝑥, 𝑢⟩ ∈ 𝑔) |
10 | 1, 7, 9 | 3bitr4i 302 | . . . . . . 7 ⊢ (𝑥𝐹𝑢 ↔ ∃𝑔 ∈ 𝐵 𝑥𝑔𝑢) |
11 | eluni2 4912 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑣⟩ ∈ ∪ 𝐵 ↔ ∃ℎ ∈ 𝐵 ⟨𝑥, 𝑣⟩ ∈ ℎ) | |
12 | df-br 5149 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐹) | |
13 | 5 | eleq2i 2825 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑣⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑣⟩ ∈ ∪ 𝐵) |
14 | 12, 13 | bitri 274 | . . . . . . . 8 ⊢ (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ ∪ 𝐵) |
15 | df-br 5149 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ ℎ) | |
16 | 15 | rexbii 3094 | . . . . . . . 8 ⊢ (∃ℎ ∈ 𝐵 𝑥ℎ𝑣 ↔ ∃ℎ ∈ 𝐵 ⟨𝑥, 𝑣⟩ ∈ ℎ) |
17 | 11, 14, 16 | 3bitr4i 302 | . . . . . . 7 ⊢ (𝑥𝐹𝑣 ↔ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣) |
18 | 10, 17 | anbi12i 627 | . . . . . 6 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) |
19 | reeanv 3226 | . . . . . 6 ⊢ (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) | |
20 | 18, 19 | bitr4i 277 | . . . . 5 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ ∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) |
21 | frrlem9.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | |
22 | 21 | rexlimdvva 3211 | . . . . 5 ⊢ (𝜑 → (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
23 | 20, 22 | biimtrid 241 | . . . 4 ⊢ (𝜑 → ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
24 | 23 | alrimiv 1930 | . . 3 ⊢ (𝜑 → ∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
25 | 24 | alrimivv 1931 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
26 | 3, 4 | frrlem6 8275 | . . 3 ⊢ Rel 𝐹 |
27 | dffun2 6553 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣))) | |
28 | 26, 27 | mpbiran 707 | . 2 ⊢ (Fun 𝐹 ↔ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
29 | 25, 28 | sylibr 233 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 ⟨cop 4634 ∪ cuni 4908 class class class wbr 5148 ↾ cres 5678 Rel wrel 5681 Predcpred 6299 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 (class class class)co 7408 frecscfrecs 8264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7411 df-frecs 8265 |
This theorem is referenced by: frrlem10 8279 frrlem11 8280 frrlem12 8281 frrlem13 8282 fpr1 8287 fprfung 8293 frr1 9753 |
Copyright terms: Public domain | W3C validator |