![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrlem9 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022.) |
Ref | Expression |
---|---|
frrlem9.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem9.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
frrlem9.3 | ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
Ref | Expression |
---|---|
frrlem9 | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4935 | . . . . . . . 8 ⊢ (〈𝑥, 𝑢〉 ∈ ∪ 𝐵 ↔ ∃𝑔 ∈ 𝐵 〈𝑥, 𝑢〉 ∈ 𝑔) | |
2 | df-br 5167 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝐹) | |
3 | frrlem9.1 | . . . . . . . . . . 11 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
4 | frrlem9.2 | . . . . . . . . . . 11 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
5 | 3, 4 | frrlem5 8331 | . . . . . . . . . 10 ⊢ 𝐹 = ∪ 𝐵 |
6 | 5 | eleq2i 2836 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑢〉 ∈ 𝐹 ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐵) |
7 | 2, 6 | bitri 275 | . . . . . . . 8 ⊢ (𝑥𝐹𝑢 ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐵) |
8 | df-br 5167 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝑔) | |
9 | 8 | rexbii 3100 | . . . . . . . 8 ⊢ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ↔ ∃𝑔 ∈ 𝐵 〈𝑥, 𝑢〉 ∈ 𝑔) |
10 | 1, 7, 9 | 3bitr4i 303 | . . . . . . 7 ⊢ (𝑥𝐹𝑢 ↔ ∃𝑔 ∈ 𝐵 𝑥𝑔𝑢) |
11 | eluni2 4935 | . . . . . . . 8 ⊢ (〈𝑥, 𝑣〉 ∈ ∪ 𝐵 ↔ ∃ℎ ∈ 𝐵 〈𝑥, 𝑣〉 ∈ ℎ) | |
12 | df-br 5167 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑣 ↔ 〈𝑥, 𝑣〉 ∈ 𝐹) | |
13 | 5 | eleq2i 2836 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑣〉 ∈ 𝐹 ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐵) |
14 | 12, 13 | bitri 275 | . . . . . . . 8 ⊢ (𝑥𝐹𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐵) |
15 | df-br 5167 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ℎ) | |
16 | 15 | rexbii 3100 | . . . . . . . 8 ⊢ (∃ℎ ∈ 𝐵 𝑥ℎ𝑣 ↔ ∃ℎ ∈ 𝐵 〈𝑥, 𝑣〉 ∈ ℎ) |
17 | 11, 14, 16 | 3bitr4i 303 | . . . . . . 7 ⊢ (𝑥𝐹𝑣 ↔ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣) |
18 | 10, 17 | anbi12i 627 | . . . . . 6 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) |
19 | reeanv 3235 | . . . . . 6 ⊢ (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) | |
20 | 18, 19 | bitr4i 278 | . . . . 5 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ ∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) |
21 | frrlem9.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | |
22 | 21 | rexlimdvva 3219 | . . . . 5 ⊢ (𝜑 → (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
23 | 20, 22 | biimtrid 242 | . . . 4 ⊢ (𝜑 → ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
24 | 23 | alrimiv 1926 | . . 3 ⊢ (𝜑 → ∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
25 | 24 | alrimivv 1927 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
26 | 3, 4 | frrlem6 8332 | . . 3 ⊢ Rel 𝐹 |
27 | dffun2 6583 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣))) | |
28 | 26, 27 | mpbiran 708 | . 2 ⊢ (Fun 𝐹 ↔ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
29 | 25, 28 | sylibr 234 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 〈cop 4654 ∪ cuni 4931 class class class wbr 5166 ↾ cres 5702 Rel wrel 5705 Predcpred 6331 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 frecscfrecs 8321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 df-frecs 8322 |
This theorem is referenced by: frrlem10 8336 frrlem11 8337 frrlem12 8338 frrlem13 8339 fpr1 8344 fprfung 8350 frr1 9828 |
Copyright terms: Public domain | W3C validator |