Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frrlem9 | Structured version Visualization version GIF version |
Description: Lemma for founded recursion. Show that the founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial ordering or Infinity. (Contributed by Scott Fenton, 27-Aug-2022.) |
Ref | Expression |
---|---|
frrlem9.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem9.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
frrlem9.3 | ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
Ref | Expression |
---|---|
frrlem9 | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4805 | . . . . . . . 8 ⊢ (〈𝑥, 𝑢〉 ∈ ∪ 𝐵 ↔ ∃𝑔 ∈ 𝐵 〈𝑥, 𝑢〉 ∈ 𝑔) | |
2 | df-br 5036 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝐹) | |
3 | frrlem9.1 | . . . . . . . . . . 11 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
4 | frrlem9.2 | . . . . . . . . . . 11 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
5 | 3, 4 | frrlem5 33393 | . . . . . . . . . 10 ⊢ 𝐹 = ∪ 𝐵 |
6 | 5 | eleq2i 2843 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑢〉 ∈ 𝐹 ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐵) |
7 | 2, 6 | bitri 278 | . . . . . . . 8 ⊢ (𝑥𝐹𝑢 ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐵) |
8 | df-br 5036 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝑔) | |
9 | 8 | rexbii 3175 | . . . . . . . 8 ⊢ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ↔ ∃𝑔 ∈ 𝐵 〈𝑥, 𝑢〉 ∈ 𝑔) |
10 | 1, 7, 9 | 3bitr4i 306 | . . . . . . 7 ⊢ (𝑥𝐹𝑢 ↔ ∃𝑔 ∈ 𝐵 𝑥𝑔𝑢) |
11 | eluni2 4805 | . . . . . . . 8 ⊢ (〈𝑥, 𝑣〉 ∈ ∪ 𝐵 ↔ ∃ℎ ∈ 𝐵 〈𝑥, 𝑣〉 ∈ ℎ) | |
12 | df-br 5036 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑣 ↔ 〈𝑥, 𝑣〉 ∈ 𝐹) | |
13 | 5 | eleq2i 2843 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑣〉 ∈ 𝐹 ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐵) |
14 | 12, 13 | bitri 278 | . . . . . . . 8 ⊢ (𝑥𝐹𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐵) |
15 | df-br 5036 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ℎ) | |
16 | 15 | rexbii 3175 | . . . . . . . 8 ⊢ (∃ℎ ∈ 𝐵 𝑥ℎ𝑣 ↔ ∃ℎ ∈ 𝐵 〈𝑥, 𝑣〉 ∈ ℎ) |
17 | 11, 14, 16 | 3bitr4i 306 | . . . . . . 7 ⊢ (𝑥𝐹𝑣 ↔ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣) |
18 | 10, 17 | anbi12i 629 | . . . . . 6 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) |
19 | reeanv 3285 | . . . . . 6 ⊢ (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) | |
20 | 18, 19 | bitr4i 281 | . . . . 5 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ ∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) |
21 | frrlem9.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | |
22 | 21 | rexlimdvva 3218 | . . . . 5 ⊢ (𝜑 → (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
23 | 20, 22 | syl5bi 245 | . . . 4 ⊢ (𝜑 → ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
24 | 23 | alrimiv 1928 | . . 3 ⊢ (𝜑 → ∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
25 | 24 | alrimivv 1929 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
26 | 3, 4 | frrlem6 33394 | . . 3 ⊢ Rel 𝐹 |
27 | dffun2 6349 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣))) | |
28 | 26, 27 | mpbiran 708 | . 2 ⊢ (Fun 𝐹 ↔ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
29 | 25, 28 | sylibr 237 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 ∀wal 1536 = wceq 1538 ∃wex 1781 ∈ wcel 2111 {cab 2735 ∀wral 3070 ∃wrex 3071 ⊆ wss 3860 〈cop 4531 ∪ cuni 4801 class class class wbr 5035 ↾ cres 5529 Rel wrel 5532 Predcpred 6129 Fun wfun 6333 Fn wfn 6334 ‘cfv 6339 (class class class)co 7155 frecscfrecs 33383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-iota 6298 df-fun 6341 df-fn 6342 df-fv 6347 df-ov 7158 df-frecs 33384 |
This theorem is referenced by: frrlem10 33398 frrlem11 33399 frrlem12 33400 frrlem13 33401 fpr1 33405 frr1 33410 |
Copyright terms: Public domain | W3C validator |