![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrlem9 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022.) |
Ref | Expression |
---|---|
frrlem9.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem9.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
frrlem9.3 | ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
Ref | Expression |
---|---|
frrlem9 | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4904 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑢⟩ ∈ ∪ 𝐵 ↔ ∃𝑔 ∈ 𝐵 ⟨𝑥, 𝑢⟩ ∈ 𝑔) | |
2 | df-br 5140 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐹) | |
3 | frrlem9.1 | . . . . . . . . . . 11 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
4 | frrlem9.2 | . . . . . . . . . . 11 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
5 | 3, 4 | frrlem5 8271 | . . . . . . . . . 10 ⊢ 𝐹 = ∪ 𝐵 |
6 | 5 | eleq2i 2817 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑢⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑢⟩ ∈ ∪ 𝐵) |
7 | 2, 6 | bitri 275 | . . . . . . . 8 ⊢ (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ ∪ 𝐵) |
8 | df-br 5140 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔) | |
9 | 8 | rexbii 3086 | . . . . . . . 8 ⊢ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ↔ ∃𝑔 ∈ 𝐵 ⟨𝑥, 𝑢⟩ ∈ 𝑔) |
10 | 1, 7, 9 | 3bitr4i 303 | . . . . . . 7 ⊢ (𝑥𝐹𝑢 ↔ ∃𝑔 ∈ 𝐵 𝑥𝑔𝑢) |
11 | eluni2 4904 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑣⟩ ∈ ∪ 𝐵 ↔ ∃ℎ ∈ 𝐵 ⟨𝑥, 𝑣⟩ ∈ ℎ) | |
12 | df-br 5140 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐹) | |
13 | 5 | eleq2i 2817 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑣⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑣⟩ ∈ ∪ 𝐵) |
14 | 12, 13 | bitri 275 | . . . . . . . 8 ⊢ (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ ∪ 𝐵) |
15 | df-br 5140 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ ℎ) | |
16 | 15 | rexbii 3086 | . . . . . . . 8 ⊢ (∃ℎ ∈ 𝐵 𝑥ℎ𝑣 ↔ ∃ℎ ∈ 𝐵 ⟨𝑥, 𝑣⟩ ∈ ℎ) |
17 | 11, 14, 16 | 3bitr4i 303 | . . . . . . 7 ⊢ (𝑥𝐹𝑣 ↔ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣) |
18 | 10, 17 | anbi12i 626 | . . . . . 6 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) |
19 | reeanv 3218 | . . . . . 6 ⊢ (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) | |
20 | 18, 19 | bitr4i 278 | . . . . 5 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ ∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) |
21 | frrlem9.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | |
22 | 21 | rexlimdvva 3203 | . . . . 5 ⊢ (𝜑 → (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
23 | 20, 22 | biimtrid 241 | . . . 4 ⊢ (𝜑 → ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
24 | 23 | alrimiv 1922 | . . 3 ⊢ (𝜑 → ∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
25 | 24 | alrimivv 1923 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
26 | 3, 4 | frrlem6 8272 | . . 3 ⊢ Rel 𝐹 |
27 | dffun2 6544 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣))) | |
28 | 26, 27 | mpbiran 706 | . 2 ⊢ (Fun 𝐹 ↔ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
29 | 25, 28 | sylibr 233 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2701 ∀wral 3053 ∃wrex 3062 ⊆ wss 3941 ⟨cop 4627 ∪ cuni 4900 class class class wbr 5139 ↾ cres 5669 Rel wrel 5672 Predcpred 6290 Fun wfun 6528 Fn wfn 6529 ‘cfv 6534 (class class class)co 7402 frecscfrecs 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-iota 6486 df-fun 6536 df-fn 6537 df-fv 6542 df-ov 7405 df-frecs 8262 |
This theorem is referenced by: frrlem10 8276 frrlem11 8277 frrlem12 8278 frrlem13 8279 fpr1 8284 fprfung 8290 frr1 9751 |
Copyright terms: Public domain | W3C validator |