Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frrlem9 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022.) |
Ref | Expression |
---|---|
frrlem9.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
frrlem9.2 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
frrlem9.3 | ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
Ref | Expression |
---|---|
frrlem9 | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4843 | . . . . . . . 8 ⊢ (〈𝑥, 𝑢〉 ∈ ∪ 𝐵 ↔ ∃𝑔 ∈ 𝐵 〈𝑥, 𝑢〉 ∈ 𝑔) | |
2 | df-br 5075 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝐹) | |
3 | frrlem9.1 | . . . . . . . . . . 11 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
4 | frrlem9.2 | . . . . . . . . . . 11 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
5 | 3, 4 | frrlem5 8106 | . . . . . . . . . 10 ⊢ 𝐹 = ∪ 𝐵 |
6 | 5 | eleq2i 2830 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑢〉 ∈ 𝐹 ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐵) |
7 | 2, 6 | bitri 274 | . . . . . . . 8 ⊢ (𝑥𝐹𝑢 ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐵) |
8 | df-br 5075 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝑔) | |
9 | 8 | rexbii 3181 | . . . . . . . 8 ⊢ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ↔ ∃𝑔 ∈ 𝐵 〈𝑥, 𝑢〉 ∈ 𝑔) |
10 | 1, 7, 9 | 3bitr4i 303 | . . . . . . 7 ⊢ (𝑥𝐹𝑢 ↔ ∃𝑔 ∈ 𝐵 𝑥𝑔𝑢) |
11 | eluni2 4843 | . . . . . . . 8 ⊢ (〈𝑥, 𝑣〉 ∈ ∪ 𝐵 ↔ ∃ℎ ∈ 𝐵 〈𝑥, 𝑣〉 ∈ ℎ) | |
12 | df-br 5075 | . . . . . . . . 9 ⊢ (𝑥𝐹𝑣 ↔ 〈𝑥, 𝑣〉 ∈ 𝐹) | |
13 | 5 | eleq2i 2830 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑣〉 ∈ 𝐹 ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐵) |
14 | 12, 13 | bitri 274 | . . . . . . . 8 ⊢ (𝑥𝐹𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐵) |
15 | df-br 5075 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ℎ) | |
16 | 15 | rexbii 3181 | . . . . . . . 8 ⊢ (∃ℎ ∈ 𝐵 𝑥ℎ𝑣 ↔ ∃ℎ ∈ 𝐵 〈𝑥, 𝑣〉 ∈ ℎ) |
17 | 11, 14, 16 | 3bitr4i 303 | . . . . . . 7 ⊢ (𝑥𝐹𝑣 ↔ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣) |
18 | 10, 17 | anbi12i 627 | . . . . . 6 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) |
19 | reeanv 3294 | . . . . . 6 ⊢ (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (∃𝑔 ∈ 𝐵 𝑥𝑔𝑢 ∧ ∃ℎ ∈ 𝐵 𝑥ℎ𝑣)) | |
20 | 18, 19 | bitr4i 277 | . . . . 5 ⊢ ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) ↔ ∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) |
21 | frrlem9.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | |
22 | 21 | rexlimdvva 3223 | . . . . 5 ⊢ (𝜑 → (∃𝑔 ∈ 𝐵 ∃ℎ ∈ 𝐵 (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
23 | 20, 22 | syl5bi 241 | . . . 4 ⊢ (𝜑 → ((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
24 | 23 | alrimiv 1930 | . . 3 ⊢ (𝜑 → ∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
25 | 24 | alrimivv 1931 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
26 | 3, 4 | frrlem6 8107 | . . 3 ⊢ Rel 𝐹 |
27 | dffun2 6443 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣))) | |
28 | 26, 27 | mpbiran 706 | . 2 ⊢ (Fun 𝐹 ↔ ∀𝑥∀𝑢∀𝑣((𝑥𝐹𝑢 ∧ 𝑥𝐹𝑣) → 𝑢 = 𝑣)) |
29 | 25, 28 | sylibr 233 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 〈cop 4567 ∪ cuni 4839 class class class wbr 5074 ↾ cres 5591 Rel wrel 5594 Predcpred 6201 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 frecscfrecs 8096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ov 7278 df-frecs 8097 |
This theorem is referenced by: frrlem10 8111 frrlem11 8112 frrlem12 8113 frrlem13 8114 fpr1 8119 fprfung 8125 frr1 9517 |
Copyright terms: Public domain | W3C validator |