MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem9 Structured version   Visualization version   GIF version

Theorem frrlem9 8293
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022.)
Hypotheses
Ref Expression
frrlem9.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem9.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
frrlem9.3 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Assertion
Ref Expression
frrlem9 (𝜑 → Fun 𝐹)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝐵,𝑔,   𝑥,𝐹,𝑢,𝑣   𝜑,𝑓   𝑓,𝐹   𝜑,𝑔,,𝑥,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑣,𝑢,𝑔,)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓)   𝑅(𝑣,𝑢,𝑔,)   𝐹(𝑦,𝑔,)   𝐺(𝑣,𝑢,𝑔,)

Proof of Theorem frrlem9
StepHypRef Expression
1 eluni2 4887 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ 𝐵 ↔ ∃𝑔𝐵𝑥, 𝑢⟩ ∈ 𝑔)
2 df-br 5120 . . . . . . . . 9 (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐹)
3 frrlem9.1 . . . . . . . . . . 11 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
4 frrlem9.2 . . . . . . . . . . 11 𝐹 = frecs(𝑅, 𝐴, 𝐺)
53, 4frrlem5 8289 . . . . . . . . . 10 𝐹 = 𝐵
65eleq2i 2826 . . . . . . . . 9 (⟨𝑥, 𝑢⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐵)
72, 6bitri 275 . . . . . . . 8 (𝑥𝐹𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐵)
8 df-br 5120 . . . . . . . . 9 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
98rexbii 3083 . . . . . . . 8 (∃𝑔𝐵 𝑥𝑔𝑢 ↔ ∃𝑔𝐵𝑥, 𝑢⟩ ∈ 𝑔)
101, 7, 93bitr4i 303 . . . . . . 7 (𝑥𝐹𝑢 ↔ ∃𝑔𝐵 𝑥𝑔𝑢)
11 eluni2 4887 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ 𝐵 ↔ ∃𝐵𝑥, 𝑣⟩ ∈ )
12 df-br 5120 . . . . . . . . 9 (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐹)
135eleq2i 2826 . . . . . . . . 9 (⟨𝑥, 𝑣⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐵)
1412, 13bitri 275 . . . . . . . 8 (𝑥𝐹𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐵)
15 df-br 5120 . . . . . . . . 9 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1615rexbii 3083 . . . . . . . 8 (∃𝐵 𝑥𝑣 ↔ ∃𝐵𝑥, 𝑣⟩ ∈ )
1711, 14, 163bitr4i 303 . . . . . . 7 (𝑥𝐹𝑣 ↔ ∃𝐵 𝑥𝑣)
1810, 17anbi12i 628 . . . . . 6 ((𝑥𝐹𝑢𝑥𝐹𝑣) ↔ (∃𝑔𝐵 𝑥𝑔𝑢 ∧ ∃𝐵 𝑥𝑣))
19 reeanv 3213 . . . . . 6 (∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣) ↔ (∃𝑔𝐵 𝑥𝑔𝑢 ∧ ∃𝐵 𝑥𝑣))
2018, 19bitr4i 278 . . . . 5 ((𝑥𝐹𝑢𝑥𝐹𝑣) ↔ ∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣))
21 frrlem9.3 . . . . . 6 ((𝜑 ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
2221rexlimdvva 3198 . . . . 5 (𝜑 → (∃𝑔𝐵𝐵 (𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
2320, 22biimtrid 242 . . . 4 (𝜑 → ((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2423alrimiv 1927 . . 3 (𝜑 → ∀𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2524alrimivv 1928 . 2 (𝜑 → ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
263, 4frrlem6 8290 . . 3 Rel 𝐹
27 dffun2 6541 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣)))
2826, 27mpbiran 709 . 2 (Fun 𝐹 ↔ ∀𝑥𝑢𝑣((𝑥𝐹𝑢𝑥𝐹𝑣) → 𝑢 = 𝑣))
2925, 28sylibr 234 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wral 3051  wrex 3060  wss 3926  cop 4607   cuni 4883   class class class wbr 5119  cres 5656  Rel wrel 5659  Predcpred 6289  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405  frecscfrecs 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-ov 7408  df-frecs 8280
This theorem is referenced by:  frrlem10  8294  frrlem11  8295  frrlem12  8296  frrlem13  8297  fpr1  8302  fprfung  8308  frr1  9773
  Copyright terms: Public domain W3C validator