 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv2 Structured version   Visualization version   GIF version

Theorem fv2 6406
 Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv2 (𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fv2
StepHypRef Expression
1 df-fv 6109 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 dfiota2 6065 . 2 (℩𝑦𝐴𝐹𝑦) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
31, 2eqtri 2821 1 (𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198  ∀wal 1651   = wceq 1653  {cab 2785  ∪ cuni 4628   class class class wbr 4843  ℩cio 6062  ‘cfv 6101 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2777 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-rex 3095  df-sn 4369  df-uni 4629  df-iota 6064  df-fv 6109 This theorem is referenced by:  elfv  6409
 Copyright terms: Public domain W3C validator