Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv2 Structured version   Visualization version   GIF version

Theorem fv2 6656
 Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv2 (𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fv2
StepHypRef Expression
1 df-fv 6351 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 dfiota2 6303 . 2 (℩𝑦𝐴𝐹𝑦) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
31, 2eqtri 2847 1 (𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209  ∀wal 1536   = wceq 1538  {cab 2802  ∪ cuni 4824   class class class wbr 5052  ℩cio 6300  ‘cfv 6343 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-in 3926  df-ss 3936  df-sn 4551  df-uni 4825  df-iota 6302  df-fv 6351 This theorem is referenced by:  elfv  6659
 Copyright terms: Public domain W3C validator