MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fv2 Structured version   Visualization version   GIF version

Theorem fv2 6751
Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv2 (𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fv2
StepHypRef Expression
1 df-fv 6426 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 dfiota2 6377 . 2 (℩𝑦𝐴𝐹𝑦) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
31, 2eqtri 2766 1 (𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  {cab 2715   cuni 4836   class class class wbr 5070  cio 6374  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iota 6376  df-fv 6426
This theorem is referenced by:  elfv  6754
  Copyright terms: Public domain W3C validator