![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fv2 | Structured version Visualization version GIF version |
Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fv2 | ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6571 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | dfiota2 6517 | . 2 ⊢ (℩𝑦𝐴𝐹𝑦) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} | |
3 | 1, 2 | eqtri 2763 | 1 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 {cab 2712 ∪ cuni 4912 class class class wbr 5148 ℩cio 6514 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-sn 4632 df-uni 4913 df-iota 6516 df-fv 6571 |
This theorem is referenced by: elfv 6905 |
Copyright terms: Public domain | W3C validator |