| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fv2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fv2 | ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6544 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | dfiota2 6490 | . 2 ⊢ (℩𝑦𝐴𝐹𝑦) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} | |
| 3 | 1, 2 | eqtri 2759 | 1 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 {cab 2714 ∪ cuni 4888 class class class wbr 5124 ℩cio 6487 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-sn 4607 df-uni 4889 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: elfv 6879 |
| Copyright terms: Public domain | W3C validator |