| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fv2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fv2 | ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6494 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | dfiota2 6443 | . 2 ⊢ (℩𝑦𝐴𝐹𝑦) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} | |
| 3 | 1, 2 | eqtri 2756 | 1 ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 {cab 2711 ∪ cuni 4858 class class class wbr 5093 ℩cio 6440 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-sn 4576 df-uni 4859 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: elfv 6826 |
| Copyright terms: Public domain | W3C validator |