Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnfvprc | Structured version Visualization version GIF version |
Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
rnfvprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
Ref | Expression |
---|---|
rnfvprc | ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnfvprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
2 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
3 | 1, 2 | eqtrid 2790 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
4 | 3 | rneqd 5836 | . 2 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ran ∅) |
5 | rn0 5824 | . 2 ⊢ ran ∅ = ∅ | |
6 | 4, 5 | eqtrdi 2795 | 1 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ran crn 5581 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 |
This theorem is referenced by: pmtrfrn 18981 mrsubrn 33375 mrsub0 33378 mrsubf 33379 mrsubccat 33380 mrsubcn 33381 mrsubco 33383 mrsubvrs 33384 elmsubrn 33390 msubrn 33391 msubf 33394 |
Copyright terms: Public domain | W3C validator |