MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnfvprc Structured version   Visualization version   GIF version

Theorem rnfvprc 6914
Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.)
Hypothesis
Ref Expression
rnfvprc.y 𝑌 = (𝐹𝑋)
Assertion
Ref Expression
rnfvprc 𝑋 ∈ V → ran 𝑌 = ∅)

Proof of Theorem rnfvprc
StepHypRef Expression
1 rnfvprc.y . . . 4 𝑌 = (𝐹𝑋)
2 fvprc 6912 . . . 4 𝑋 ∈ V → (𝐹𝑋) = ∅)
31, 2eqtrid 2792 . . 3 𝑋 ∈ V → 𝑌 = ∅)
43rneqd 5963 . 2 𝑋 ∈ V → ran 𝑌 = ran ∅)
5 rn0 5950 . 2 ran ∅ = ∅
64, 5eqtrdi 2796 1 𝑋 ∈ V → ran 𝑌 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  ran crn 5701  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581
This theorem is referenced by:  pmtrfrn  19500  mrsubrn  35481  mrsub0  35484  mrsubf  35485  mrsubccat  35486  mrsubcn  35487  mrsubco  35489  mrsubvrs  35490  elmsubrn  35496  msubrn  35497  msubf  35500
  Copyright terms: Public domain W3C validator