| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnfvprc | Structured version Visualization version GIF version | ||
| Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| rnfvprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| rnfvprc | ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnfvprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
| 2 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 3 | 1, 2 | eqtrid 2776 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
| 4 | 3 | rneqd 5902 | . 2 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ran ∅) |
| 5 | rn0 5889 | . 2 ⊢ ran ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2780 | 1 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ran crn 5639 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: pmtrfrn 19388 mrsubrn 35500 mrsub0 35503 mrsubf 35504 mrsubccat 35505 mrsubcn 35506 mrsubco 35508 mrsubvrs 35509 elmsubrn 35515 msubrn 35516 msubf 35519 |
| Copyright terms: Public domain | W3C validator |