![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnfvprc | Structured version Visualization version GIF version |
Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
rnfvprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
Ref | Expression |
---|---|
rnfvprc | ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnfvprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
2 | fvprc 6425 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
3 | 1, 2 | syl5eq 2872 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
4 | 3 | rneqd 5584 | . 2 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ran ∅) |
5 | rn0 5609 | . 2 ⊢ ran ∅ = ∅ | |
6 | 4, 5 | syl6eq 2876 | 1 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3413 ∅c0 4143 ran crn 5342 ‘cfv 6122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-cnv 5349 df-dm 5351 df-rn 5352 df-iota 6085 df-fv 6130 |
This theorem is referenced by: pmtrfrn 18227 mrsubrn 31955 mrsub0 31958 mrsubf 31959 mrsubccat 31960 mrsubcn 31961 mrsubco 31963 mrsubvrs 31964 elmsubrn 31970 msubrn 31971 msubf 31974 |
Copyright terms: Public domain | W3C validator |