Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnfvprc | Structured version Visualization version GIF version |
Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
rnfvprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
Ref | Expression |
---|---|
rnfvprc | ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnfvprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
2 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
3 | 1, 2 | eqtrid 2790 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
4 | 3 | rneqd 5847 | . 2 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ran ∅) |
5 | rn0 5835 | . 2 ⊢ ran ∅ = ∅ | |
6 | 4, 5 | eqtrdi 2794 | 1 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ran crn 5590 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 df-iota 6391 df-fv 6441 |
This theorem is referenced by: pmtrfrn 19066 mrsubrn 33475 mrsub0 33478 mrsubf 33479 mrsubccat 33480 mrsubcn 33481 mrsubco 33483 mrsubvrs 33484 elmsubrn 33490 msubrn 33491 msubf 33494 |
Copyright terms: Public domain | W3C validator |