| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnfvprc | Structured version Visualization version GIF version | ||
| Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| rnfvprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| rnfvprc | ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnfvprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
| 2 | fvprc 6820 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 3 | 1, 2 | eqtrid 2780 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
| 4 | 3 | rneqd 5882 | . 2 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ran ∅) |
| 5 | rn0 5870 | . 2 ⊢ ran ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2784 | 1 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ran crn 5620 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: pmtrfrn 19372 mrsubrn 35578 mrsub0 35581 mrsubf 35582 mrsubccat 35583 mrsubcn 35584 mrsubco 35586 mrsubvrs 35587 elmsubrn 35593 msubrn 35594 msubf 35597 |
| Copyright terms: Public domain | W3C validator |