| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnfvprc | Structured version Visualization version GIF version | ||
| Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| rnfvprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| rnfvprc | ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnfvprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
| 2 | fvprc 6867 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 3 | 1, 2 | eqtrid 2782 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
| 4 | 3 | rneqd 5918 | . 2 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ran ∅) |
| 5 | rn0 5905 | . 2 ⊢ ran ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2786 | 1 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ran crn 5655 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-iota 6483 df-fv 6538 |
| This theorem is referenced by: pmtrfrn 19437 mrsubrn 35481 mrsub0 35484 mrsubf 35485 mrsubccat 35486 mrsubcn 35487 mrsubco 35489 mrsubvrs 35490 elmsubrn 35496 msubrn 35497 msubf 35500 |
| Copyright terms: Public domain | W3C validator |