MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnfvprc Structured version   Visualization version   GIF version

Theorem rnfvprc 6426
Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.)
Hypothesis
Ref Expression
rnfvprc.y 𝑌 = (𝐹𝑋)
Assertion
Ref Expression
rnfvprc 𝑋 ∈ V → ran 𝑌 = ∅)

Proof of Theorem rnfvprc
StepHypRef Expression
1 rnfvprc.y . . . 4 𝑌 = (𝐹𝑋)
2 fvprc 6425 . . . 4 𝑋 ∈ V → (𝐹𝑋) = ∅)
31, 2syl5eq 2872 . . 3 𝑋 ∈ V → 𝑌 = ∅)
43rneqd 5584 . 2 𝑋 ∈ V → ran 𝑌 = ran ∅)
5 rn0 5609 . 2 ran ∅ = ∅
64, 5syl6eq 2876 1 𝑋 ∈ V → ran 𝑌 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1658  wcel 2166  Vcvv 3413  c0 4143  ran crn 5342  cfv 6122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-cnv 5349  df-dm 5351  df-rn 5352  df-iota 6085  df-fv 6130
This theorem is referenced by:  pmtrfrn  18227  mrsubrn  31955  mrsub0  31958  mrsubf  31959  mrsubccat  31960  mrsubcn  31961  mrsubco  31963  mrsubvrs  31964  elmsubrn  31970  msubrn  31971  msubf  31974
  Copyright terms: Public domain W3C validator