MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnfvprc Structured version   Visualization version   GIF version

Theorem rnfvprc 6822
Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.)
Hypothesis
Ref Expression
rnfvprc.y 𝑌 = (𝐹𝑋)
Assertion
Ref Expression
rnfvprc 𝑋 ∈ V → ran 𝑌 = ∅)

Proof of Theorem rnfvprc
StepHypRef Expression
1 rnfvprc.y . . . 4 𝑌 = (𝐹𝑋)
2 fvprc 6820 . . . 4 𝑋 ∈ V → (𝐹𝑋) = ∅)
31, 2eqtrid 2780 . . 3 𝑋 ∈ V → 𝑌 = ∅)
43rneqd 5882 . 2 𝑋 ∈ V → ran 𝑌 = ran ∅)
5 rn0 5870 . 2 ran ∅ = ∅
64, 5eqtrdi 2784 1 𝑋 ∈ V → ran 𝑌 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  ran crn 5620  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-cnv 5627  df-dm 5629  df-rn 5630  df-iota 6442  df-fv 6494
This theorem is referenced by:  pmtrfrn  19372  mrsubrn  35578  mrsub0  35581  mrsubf  35582  mrsubccat  35583  mrsubcn  35584  mrsubco  35586  mrsubvrs  35587  elmsubrn  35593  msubrn  35594  msubf  35597
  Copyright terms: Public domain W3C validator