| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnfvprc | Structured version Visualization version GIF version | ||
| Description: The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.) |
| Ref | Expression |
|---|---|
| rnfvprc.y | ⊢ 𝑌 = (𝐹‘𝑋) |
| Ref | Expression |
|---|---|
| rnfvprc | ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnfvprc.y | . . . 4 ⊢ 𝑌 = (𝐹‘𝑋) | |
| 2 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (𝐹‘𝑋) = ∅) | |
| 3 | 1, 2 | eqtrid 2778 | . . 3 ⊢ (¬ 𝑋 ∈ V → 𝑌 = ∅) |
| 4 | 3 | rneqd 5878 | . 2 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ran ∅) |
| 5 | rn0 5866 | . 2 ⊢ ran ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2782 | 1 ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ran crn 5617 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-cnv 5624 df-dm 5626 df-rn 5627 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: pmtrfrn 19368 mrsubrn 35545 mrsub0 35548 mrsubf 35549 mrsubccat 35550 mrsubcn 35551 mrsubco 35553 mrsubvrs 35554 elmsubrn 35560 msubrn 35561 msubf 35564 |
| Copyright terms: Public domain | W3C validator |