![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffv3 | Structured version Visualization version GIF version |
Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.) |
Ref | Expression |
---|---|
dffv3 | ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6551 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | elimasng 6087 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)) | |
3 | df-br 5149 | . . . . . 6 ⊢ (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹) | |
4 | 2, 3 | bitr4di 288 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
5 | 4 | elvd 3481 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
6 | 5 | iotabidv 6527 | . . 3 ⊢ (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
7 | 1, 6 | eqtr4id 2791 | . 2 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
8 | fvprc 6883 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
9 | snprc 4721 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
10 | 9 | biimpi 215 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
11 | 10 | imaeq2d 6059 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅)) |
12 | ima0 6076 | . . . . . . 7 ⊢ (𝐹 “ ∅) = ∅ | |
13 | 11, 12 | eqtrdi 2788 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅) |
14 | 13 | eleq2d 2819 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅)) |
15 | 14 | iotabidv 6527 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅)) |
16 | noel 4330 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
17 | 16 | nex 1802 | . . . . . 6 ⊢ ¬ ∃𝑥 𝑥 ∈ ∅ |
18 | euex 2571 | . . . . . 6 ⊢ (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅) | |
19 | 17, 18 | mto 196 | . . . . 5 ⊢ ¬ ∃!𝑥 𝑥 ∈ ∅ |
20 | iotanul 6521 | . . . . 5 ⊢ (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (℩𝑥𝑥 ∈ ∅) = ∅ |
22 | 15, 21 | eqtrdi 2788 | . . 3 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅) |
23 | 8, 22 | eqtr4d 2775 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
24 | 7, 23 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃!weu 2562 Vcvv 3474 ∅c0 4322 {csn 4628 ⟨cop 4634 class class class wbr 5148 “ cima 5679 ℩cio 6493 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fv 6551 |
This theorem is referenced by: dffv4 6888 fvco2 6988 shftval 15020 dffv5 34891 |
Copyright terms: Public domain | W3C validator |