MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv3 Structured version   Visualization version   GIF version

Theorem dffv3 6854
Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dffv3 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem dffv3
StepHypRef Expression
1 df-fv 6519 . . 3 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 elimasng 6060 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
3 df-br 5108 . . . . . 6 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
42, 3bitr4di 289 . . . . 5 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
54elvd 3453 . . . 4 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
65iotabidv 6495 . . 3 (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥))
71, 6eqtr4id 2783 . 2 (𝐴 ∈ V → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
8 fvprc 6850 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
9 snprc 4681 . . . . . . . . 9 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 216 . . . . . . . 8 𝐴 ∈ V → {𝐴} = ∅)
1110imaeq2d 6031 . . . . . . 7 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
12 ima0 6048 . . . . . . 7 (𝐹 “ ∅) = ∅
1311, 12eqtrdi 2780 . . . . . 6 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
1413eleq2d 2814 . . . . 5 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅))
1514iotabidv 6495 . . . 4 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅))
16 noel 4301 . . . . . . 7 ¬ 𝑥 ∈ ∅
1716nex 1800 . . . . . 6 ¬ ∃𝑥 𝑥 ∈ ∅
18 euex 2570 . . . . . 6 (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅)
1917, 18mto 197 . . . . 5 ¬ ∃!𝑥 𝑥 ∈ ∅
20 iotanul 6489 . . . . 5 (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅)
2119, 20ax-mp 5 . . . 4 (℩𝑥𝑥 ∈ ∅) = ∅
2215, 21eqtrdi 2780 . . 3 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅)
238, 22eqtr4d 2767 . 2 𝐴 ∈ V → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
247, 23pm2.61i 182 1 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  Vcvv 3447  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  cima 5641  cio 6462  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519
This theorem is referenced by:  dffv4  6855  fvco2  6958  shftval  15040  dffv5  35912
  Copyright terms: Public domain W3C validator