MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv3 Structured version   Visualization version   GIF version

Theorem dffv3 6877
Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dffv3 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem dffv3
StepHypRef Expression
1 df-fv 6544 . . 3 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 elimasng 6081 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
3 df-br 5125 . . . . . 6 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
42, 3bitr4di 289 . . . . 5 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
54elvd 3470 . . . 4 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
65iotabidv 6520 . . 3 (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥))
71, 6eqtr4id 2790 . 2 (𝐴 ∈ V → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
8 fvprc 6873 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
9 snprc 4698 . . . . . . . . 9 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 216 . . . . . . . 8 𝐴 ∈ V → {𝐴} = ∅)
1110imaeq2d 6052 . . . . . . 7 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
12 ima0 6069 . . . . . . 7 (𝐹 “ ∅) = ∅
1311, 12eqtrdi 2787 . . . . . 6 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
1413eleq2d 2821 . . . . 5 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅))
1514iotabidv 6520 . . . 4 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅))
16 noel 4318 . . . . . . 7 ¬ 𝑥 ∈ ∅
1716nex 1800 . . . . . 6 ¬ ∃𝑥 𝑥 ∈ ∅
18 euex 2577 . . . . . 6 (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅)
1917, 18mto 197 . . . . 5 ¬ ∃!𝑥 𝑥 ∈ ∅
20 iotanul 6514 . . . . 5 (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅)
2119, 20ax-mp 5 . . . 4 (℩𝑥𝑥 ∈ ∅) = ∅
2215, 21eqtrdi 2787 . . 3 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅)
238, 22eqtr4d 2774 . 2 𝐴 ∈ V → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
247, 23pm2.61i 182 1 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2568  Vcvv 3464  c0 4313  {csn 4606  cop 4612   class class class wbr 5124  cima 5662  cio 6487  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fv 6544
This theorem is referenced by:  dffv4  6878  fvco2  6981  shftval  15098  dffv5  35947
  Copyright terms: Public domain W3C validator