Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffv3 | Structured version Visualization version GIF version |
Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.) |
Ref | Expression |
---|---|
dffv3 | ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6441 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | elimasng 5996 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
3 | df-br 5075 | . . . . . 6 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
4 | 2, 3 | bitr4di 289 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
5 | 4 | elvd 3439 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
6 | 5 | iotabidv 6417 | . . 3 ⊢ (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
7 | 1, 6 | eqtr4id 2797 | . 2 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
8 | fvprc 6766 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
9 | snprc 4653 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
10 | 9 | biimpi 215 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
11 | 10 | imaeq2d 5969 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅)) |
12 | ima0 5985 | . . . . . . 7 ⊢ (𝐹 “ ∅) = ∅ | |
13 | 11, 12 | eqtrdi 2794 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅) |
14 | 13 | eleq2d 2824 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅)) |
15 | 14 | iotabidv 6417 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅)) |
16 | noel 4264 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
17 | 16 | nex 1803 | . . . . . 6 ⊢ ¬ ∃𝑥 𝑥 ∈ ∅ |
18 | euex 2577 | . . . . . 6 ⊢ (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅) | |
19 | 17, 18 | mto 196 | . . . . 5 ⊢ ¬ ∃!𝑥 𝑥 ∈ ∅ |
20 | iotanul 6411 | . . . . 5 ⊢ (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (℩𝑥𝑥 ∈ ∅) = ∅ |
22 | 15, 21 | eqtrdi 2794 | . . 3 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅) |
23 | 8, 22 | eqtr4d 2781 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
24 | 7, 23 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 Vcvv 3432 ∅c0 4256 {csn 4561 〈cop 4567 class class class wbr 5074 “ cima 5592 ℩cio 6389 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 |
This theorem is referenced by: dffv4 6771 fvco2 6865 shftval 14785 dffv5 34226 |
Copyright terms: Public domain | W3C validator |