Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv3 Structured version   Visualization version   GIF version

Theorem dffv3 6658
 Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dffv3 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem dffv3
StepHypRef Expression
1 df-fv 6347 . . 3 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 elimasng 5931 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
3 df-br 5036 . . . . . 6 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
42, 3bitr4di 292 . . . . 5 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
54elvd 3416 . . . 4 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
65iotabidv 6323 . . 3 (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥))
71, 6eqtr4id 2812 . 2 (𝐴 ∈ V → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
8 fvprc 6654 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
9 snprc 4613 . . . . . . . . 9 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 219 . . . . . . . 8 𝐴 ∈ V → {𝐴} = ∅)
1110imaeq2d 5905 . . . . . . 7 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
12 ima0 5921 . . . . . . 7 (𝐹 “ ∅) = ∅
1311, 12eqtrdi 2809 . . . . . 6 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
1413eleq2d 2837 . . . . 5 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅))
1514iotabidv 6323 . . . 4 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅))
16 noel 4232 . . . . . . 7 ¬ 𝑥 ∈ ∅
1716nex 1802 . . . . . 6 ¬ ∃𝑥 𝑥 ∈ ∅
18 euex 2596 . . . . . 6 (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅)
1917, 18mto 200 . . . . 5 ¬ ∃!𝑥 𝑥 ∈ ∅
20 iotanul 6317 . . . . 5 (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅)
2119, 20ax-mp 5 . . . 4 (℩𝑥𝑥 ∈ ∅) = ∅
2215, 21eqtrdi 2809 . . 3 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅)
238, 22eqtr4d 2796 . 2 𝐴 ∈ V → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
247, 23pm2.61i 185 1 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∃!weu 2587  Vcvv 3409  ∅c0 4227  {csn 4525  ⟨cop 4531   class class class wbr 5035   “ cima 5530  ℩cio 6296  ‘cfv 6339 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-xp 5533  df-cnv 5535  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fv 6347 This theorem is referenced by:  dffv4  6659  fvco2  6753  shftval  14486  dffv5  33801
 Copyright terms: Public domain W3C validator