| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffv3 | Structured version Visualization version GIF version | ||
| Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| dffv3 | ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6489 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | elimasng 6038 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
| 3 | df-br 5092 | . . . . . 6 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
| 4 | 2, 3 | bitr4di 289 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 5 | 4 | elvd 3442 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 6 | 5 | iotabidv 6465 | . . 3 ⊢ (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
| 7 | 1, 6 | eqtr4id 2785 | . 2 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| 8 | fvprc 6814 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 9 | snprc 4670 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 10 | 9 | biimpi 216 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 11 | 10 | imaeq2d 6009 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅)) |
| 12 | ima0 6026 | . . . . . . 7 ⊢ (𝐹 “ ∅) = ∅ | |
| 13 | 11, 12 | eqtrdi 2782 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅) |
| 14 | 13 | eleq2d 2817 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅)) |
| 15 | 14 | iotabidv 6465 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅)) |
| 16 | noel 4288 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
| 17 | 16 | nex 1801 | . . . . . 6 ⊢ ¬ ∃𝑥 𝑥 ∈ ∅ |
| 18 | euex 2572 | . . . . . 6 ⊢ (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅) | |
| 19 | 17, 18 | mto 197 | . . . . 5 ⊢ ¬ ∃!𝑥 𝑥 ∈ ∅ |
| 20 | iotanul 6461 | . . . . 5 ⊢ (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (℩𝑥𝑥 ∈ ∅) = ∅ |
| 22 | 15, 21 | eqtrdi 2782 | . . 3 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅) |
| 23 | 8, 22 | eqtr4d 2769 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| 24 | 7, 23 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 ∅c0 4283 {csn 4576 〈cop 4582 class class class wbr 5091 “ cima 5619 ℩cio 6435 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: dffv4 6819 fvco2 6919 shftval 14978 dffv5 35957 |
| Copyright terms: Public domain | W3C validator |