| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffv3 | Structured version Visualization version GIF version | ||
| Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| dffv3 | ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6494 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | elimasng 6042 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 〈𝐴, 𝑥〉 ∈ 𝐹)) | |
| 3 | df-br 5094 | . . . . . 6 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
| 4 | 2, 3 | bitr4di 289 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 5 | 4 | elvd 3443 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥)) |
| 6 | 5 | iotabidv 6470 | . . 3 ⊢ (𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝐴𝐹𝑥)) |
| 7 | 1, 6 | eqtr4id 2787 | . 2 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| 8 | fvprc 6820 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | |
| 9 | snprc 4669 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 10 | 9 | biimpi 216 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 11 | 10 | imaeq2d 6013 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅)) |
| 12 | ima0 6030 | . . . . . . 7 ⊢ (𝐹 “ ∅) = ∅ | |
| 13 | 11, 12 | eqtrdi 2784 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅) |
| 14 | 13 | eleq2d 2819 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝑥 ∈ ∅)) |
| 15 | 14 | iotabidv 6470 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = (℩𝑥𝑥 ∈ ∅)) |
| 16 | noel 4287 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
| 17 | 16 | nex 1801 | . . . . . 6 ⊢ ¬ ∃𝑥 𝑥 ∈ ∅ |
| 18 | euex 2574 | . . . . . 6 ⊢ (∃!𝑥 𝑥 ∈ ∅ → ∃𝑥 𝑥 ∈ ∅) | |
| 19 | 17, 18 | mto 197 | . . . . 5 ⊢ ¬ ∃!𝑥 𝑥 ∈ ∅ |
| 20 | iotanul 6466 | . . . . 5 ⊢ (¬ ∃!𝑥 𝑥 ∈ ∅ → (℩𝑥𝑥 ∈ ∅) = ∅) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (℩𝑥𝑥 ∈ ∅) = ∅ |
| 22 | 15, 21 | eqtrdi 2784 | . . 3 ⊢ (¬ 𝐴 ∈ V → (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∅) |
| 23 | 8, 22 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) |
| 24 | 7, 23 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃!weu 2565 Vcvv 3437 ∅c0 4282 {csn 4575 〈cop 4581 class class class wbr 5093 “ cima 5622 ℩cio 6440 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: dffv4 6825 fvco2 6925 shftval 14983 dffv5 35987 |
| Copyright terms: Public domain | W3C validator |