MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfv Structured version   Visualization version   GIF version

Theorem elfv 6820
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 6817 . . 3 (𝐹𝐵) = {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)}
21eleq2i 2823 . 2 (𝐴 ∈ (𝐹𝐵) ↔ 𝐴 {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)})
3 eluniab 4870 . 2 (𝐴 {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)} ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
42, 3bitri 275 1 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1539  wex 1780  wcel 2111  {cab 2709   cuni 4856   class class class wbr 5089  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-sn 4574  df-uni 4857  df-iota 6437  df-fv 6489
This theorem is referenced by:  fv3  6840
  Copyright terms: Public domain W3C validator