MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfv Structured version   Visualization version   GIF version

Theorem elfv 6659
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
elfv (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elfv
StepHypRef Expression
1 fv2 6656 . . 3 (𝐹𝐵) = {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)}
21eleq2i 2907 . 2 (𝐴 ∈ (𝐹𝐵) ↔ 𝐴 {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)})
3 eluniab 4839 . 2 (𝐴 {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)} ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
42, 3bitri 278 1 (𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wal 1536  wex 1781  wcel 2115  {cab 2802   cuni 4824   class class class wbr 5052  cfv 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-in 3926  df-ss 3936  df-sn 4551  df-uni 4825  df-iota 6302  df-fv 6351
This theorem is referenced by:  fv3  6679
  Copyright terms: Public domain W3C validator