![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hilid | Structured version Visualization version GIF version |
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hilid | ⊢ (GId‘ +ℎ ) = 0ℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilablo 31192 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
2 | ablogrpo 30579 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
4 | ax-hfvadd 31032 | . . . . . 6 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
5 | 4 | fdmi 6758 | . . . . 5 ⊢ dom +ℎ = ( ℋ × ℋ) |
6 | 3, 5 | grporn 30553 | . . . 4 ⊢ ℋ = ran +ℎ |
7 | eqid 2740 | . . . 4 ⊢ (GId‘ +ℎ ) = (GId‘ +ℎ ) | |
8 | 6, 7 | grpoidval 30545 | . . 3 ⊢ ( +ℎ ∈ GrpOp → (GId‘ +ℎ ) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥)) |
9 | 3, 8 | ax-mp 5 | . 2 ⊢ (GId‘ +ℎ ) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) |
10 | hvaddlid 31055 | . . . 4 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
11 | 10 | rgen 3069 | . . 3 ⊢ ∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 |
12 | ax-hv0cl 31035 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
13 | 6 | grpoideu 30541 | . . . . 5 ⊢ ( +ℎ ∈ GrpOp → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) |
14 | 3, 13 | ax-mp 5 | . . . 4 ⊢ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥 |
15 | oveq1 7455 | . . . . . . 7 ⊢ (𝑦 = 0ℎ → (𝑦 +ℎ 𝑥) = (0ℎ +ℎ 𝑥)) | |
16 | 15 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑦 = 0ℎ → ((𝑦 +ℎ 𝑥) = 𝑥 ↔ (0ℎ +ℎ 𝑥) = 𝑥)) |
17 | 16 | ralbidv 3184 | . . . . 5 ⊢ (𝑦 = 0ℎ → (∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥)) |
18 | 17 | riota2 7430 | . . . 4 ⊢ ((0ℎ ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) → (∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ)) |
19 | 12, 14, 18 | mp2an 691 | . . 3 ⊢ (∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ) |
20 | 11, 19 | mpbi 230 | . 2 ⊢ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ |
21 | 9, 20 | eqtri 2768 | 1 ⊢ (GId‘ +ℎ ) = 0ℎ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃!wreu 3386 × cxp 5698 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 GrpOpcgr 30521 GIdcgi 30522 AbelOpcablo 30576 ℋchba 30951 +ℎ cva 30952 0ℎc0v 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvdistr2 31041 ax-hvmul0 31042 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-grpo 30525 df-gid 30526 df-ablo 30577 df-hvsub 31003 |
This theorem is referenced by: hhnv 31197 hh0v 31200 hhssabloilem 31293 |
Copyright terms: Public domain | W3C validator |