| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hilid | Structured version Visualization version GIF version | ||
| Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hilid | ⊢ (GId‘ +ℎ ) = 0ℎ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo 31107 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
| 2 | ablogrpo 30494 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
| 4 | ax-hfvadd 30947 | . . . . . 6 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 5 | 4 | fdmi 6727 | . . . . 5 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 6 | 3, 5 | grporn 30468 | . . . 4 ⊢ ℋ = ran +ℎ |
| 7 | eqid 2734 | . . . 4 ⊢ (GId‘ +ℎ ) = (GId‘ +ℎ ) | |
| 8 | 6, 7 | grpoidval 30460 | . . 3 ⊢ ( +ℎ ∈ GrpOp → (GId‘ +ℎ ) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥)) |
| 9 | 3, 8 | ax-mp 5 | . 2 ⊢ (GId‘ +ℎ ) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) |
| 10 | hvaddlid 30970 | . . . 4 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
| 11 | 10 | rgen 3052 | . . 3 ⊢ ∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 |
| 12 | ax-hv0cl 30950 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 13 | 6 | grpoideu 30456 | . . . . 5 ⊢ ( +ℎ ∈ GrpOp → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) |
| 14 | 3, 13 | ax-mp 5 | . . . 4 ⊢ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥 |
| 15 | oveq1 7420 | . . . . . . 7 ⊢ (𝑦 = 0ℎ → (𝑦 +ℎ 𝑥) = (0ℎ +ℎ 𝑥)) | |
| 16 | 15 | eqeq1d 2736 | . . . . . 6 ⊢ (𝑦 = 0ℎ → ((𝑦 +ℎ 𝑥) = 𝑥 ↔ (0ℎ +ℎ 𝑥) = 𝑥)) |
| 17 | 16 | ralbidv 3165 | . . . . 5 ⊢ (𝑦 = 0ℎ → (∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥)) |
| 18 | 17 | riota2 7395 | . . . 4 ⊢ ((0ℎ ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) → (∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ)) |
| 19 | 12, 14, 18 | mp2an 692 | . . 3 ⊢ (∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ) |
| 20 | 11, 19 | mpbi 230 | . 2 ⊢ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ |
| 21 | 9, 20 | eqtri 2757 | 1 ⊢ (GId‘ +ℎ ) = 0ℎ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3361 × cxp 5663 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 GrpOpcgr 30436 GIdcgi 30437 AbelOpcablo 30491 ℋchba 30866 +ℎ cva 30867 0ℎc0v 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-hilex 30946 ax-hfvadd 30947 ax-hvcom 30948 ax-hvass 30949 ax-hv0cl 30950 ax-hvaddid 30951 ax-hfvmul 30952 ax-hvmulid 30953 ax-hvdistr2 30956 ax-hvmul0 30957 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-sub 11476 df-neg 11477 df-grpo 30440 df-gid 30441 df-ablo 30492 df-hvsub 30918 |
| This theorem is referenced by: hhnv 31112 hh0v 31115 hhssabloilem 31208 |
| Copyright terms: Public domain | W3C validator |