HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilid Structured version   Visualization version   GIF version

Theorem hilid 29901
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilid (GId‘ + ) = 0

Proof of Theorem hilid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 29900 . . . 4 + ∈ AbelOp
2 ablogrpo 29287 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-hfvadd 29740 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
54fdmi 6675 . . . . 5 dom + = ( ℋ × ℋ)
63, 5grporn 29261 . . . 4 ℋ = ran +
7 eqid 2737 . . . 4 (GId‘ + ) = (GId‘ + )
86, 7grpoidval 29253 . . 3 ( + ∈ GrpOp → (GId‘ + ) = (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥))
93, 8ax-mp 5 . 2 (GId‘ + ) = (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥)
10 hvaddid2 29763 . . . 4 (𝑥 ∈ ℋ → (0 + 𝑥) = 𝑥)
1110rgen 3064 . . 3 𝑥 ∈ ℋ (0 + 𝑥) = 𝑥
12 ax-hv0cl 29743 . . . 4 0 ∈ ℋ
136grpoideu 29249 . . . . 5 ( + ∈ GrpOp → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥)
143, 13ax-mp 5 . . . 4 ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥
15 oveq1 7356 . . . . . . 7 (𝑦 = 0 → (𝑦 + 𝑥) = (0 + 𝑥))
1615eqeq1d 2739 . . . . . 6 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥))
1716ralbidv 3172 . . . . 5 (𝑦 = 0 → (∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥))
1817riota2 7331 . . . 4 ((0 ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) → (∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥 ↔ (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0))
1912, 14, 18mp2an 690 . . 3 (∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥 ↔ (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0)
2011, 19mpbi 229 . 2 (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0
219, 20eqtri 2765 1 (GId‘ + ) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  wral 3062  ∃!wreu 3349   × cxp 5628  cfv 6491  crio 7304  (class class class)co 7349  GrpOpcgr 29229  GIdcgi 29230  AbelOpcablo 29284  chba 29659   + cva 29660  0c0v 29664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-hilex 29739  ax-hfvadd 29740  ax-hvcom 29741  ax-hvass 29742  ax-hv0cl 29743  ax-hvaddid 29744  ax-hfvmul 29745  ax-hvmulid 29746  ax-hvdistr2 29749  ax-hvmul0 29750
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5528  df-po 5542  df-so 5543  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-pnf 11124  df-mnf 11125  df-ltxr 11127  df-sub 11320  df-neg 11321  df-grpo 29233  df-gid 29234  df-ablo 29285  df-hvsub 29711
This theorem is referenced by:  hhnv  29905  hh0v  29908  hhssabloilem  30001
  Copyright terms: Public domain W3C validator