HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilid Structured version   Visualization version   GIF version

Theorem hilid 31090
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilid (GId‘ + ) = 0

Proof of Theorem hilid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 31089 . . . 4 + ∈ AbelOp
2 ablogrpo 30476 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-hfvadd 30929 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
54fdmi 6699 . . . . 5 dom + = ( ℋ × ℋ)
63, 5grporn 30450 . . . 4 ℋ = ran +
7 eqid 2729 . . . 4 (GId‘ + ) = (GId‘ + )
86, 7grpoidval 30442 . . 3 ( + ∈ GrpOp → (GId‘ + ) = (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥))
93, 8ax-mp 5 . 2 (GId‘ + ) = (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥)
10 hvaddlid 30952 . . . 4 (𝑥 ∈ ℋ → (0 + 𝑥) = 𝑥)
1110rgen 3046 . . 3 𝑥 ∈ ℋ (0 + 𝑥) = 𝑥
12 ax-hv0cl 30932 . . . 4 0 ∈ ℋ
136grpoideu 30438 . . . . 5 ( + ∈ GrpOp → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥)
143, 13ax-mp 5 . . . 4 ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥
15 oveq1 7394 . . . . . . 7 (𝑦 = 0 → (𝑦 + 𝑥) = (0 + 𝑥))
1615eqeq1d 2731 . . . . . 6 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥))
1716ralbidv 3156 . . . . 5 (𝑦 = 0 → (∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥))
1817riota2 7369 . . . 4 ((0 ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) → (∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥 ↔ (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0))
1912, 14, 18mp2an 692 . . 3 (∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥 ↔ (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0)
2011, 19mpbi 230 . 2 (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0
219, 20eqtri 2752 1 (GId‘ + ) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352   × cxp 5636  cfv 6511  crio 7343  (class class class)co 7387  GrpOpcgr 30418  GIdcgi 30419  AbelOpcablo 30473  chba 30848   + cva 30849  0c0v 30853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvdistr2 30938  ax-hvmul0 30939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408  df-grpo 30422  df-gid 30423  df-ablo 30474  df-hvsub 30900
This theorem is referenced by:  hhnv  31094  hh0v  31097  hhssabloilem  31190
  Copyright terms: Public domain W3C validator