Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hilid | Structured version Visualization version GIF version |
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hilid | ⊢ (GId‘ +ℎ ) = 0ℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilablo 29423 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
2 | ablogrpo 28810 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
4 | ax-hfvadd 29263 | . . . . . 6 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
5 | 4 | fdmi 6596 | . . . . 5 ⊢ dom +ℎ = ( ℋ × ℋ) |
6 | 3, 5 | grporn 28784 | . . . 4 ⊢ ℋ = ran +ℎ |
7 | eqid 2738 | . . . 4 ⊢ (GId‘ +ℎ ) = (GId‘ +ℎ ) | |
8 | 6, 7 | grpoidval 28776 | . . 3 ⊢ ( +ℎ ∈ GrpOp → (GId‘ +ℎ ) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥)) |
9 | 3, 8 | ax-mp 5 | . 2 ⊢ (GId‘ +ℎ ) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) |
10 | hvaddid2 29286 | . . . 4 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
11 | 10 | rgen 3073 | . . 3 ⊢ ∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 |
12 | ax-hv0cl 29266 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
13 | 6 | grpoideu 28772 | . . . . 5 ⊢ ( +ℎ ∈ GrpOp → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) |
14 | 3, 13 | ax-mp 5 | . . . 4 ⊢ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥 |
15 | oveq1 7262 | . . . . . . 7 ⊢ (𝑦 = 0ℎ → (𝑦 +ℎ 𝑥) = (0ℎ +ℎ 𝑥)) | |
16 | 15 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑦 = 0ℎ → ((𝑦 +ℎ 𝑥) = 𝑥 ↔ (0ℎ +ℎ 𝑥) = 𝑥)) |
17 | 16 | ralbidv 3120 | . . . . 5 ⊢ (𝑦 = 0ℎ → (∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥)) |
18 | 17 | riota2 7238 | . . . 4 ⊢ ((0ℎ ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) → (∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ)) |
19 | 12, 14, 18 | mp2an 688 | . . 3 ⊢ (∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ) |
20 | 11, 19 | mpbi 229 | . 2 ⊢ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ |
21 | 9, 20 | eqtri 2766 | 1 ⊢ (GId‘ +ℎ ) = 0ℎ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃!wreu 3065 × cxp 5578 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 GrpOpcgr 28752 GIdcgi 28753 AbelOpcablo 28807 ℋchba 29182 +ℎ cva 29183 0ℎc0v 29187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvdistr2 29272 ax-hvmul0 29273 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-grpo 28756 df-gid 28757 df-ablo 28808 df-hvsub 29234 |
This theorem is referenced by: hhnv 29428 hh0v 29431 hhssabloilem 29524 |
Copyright terms: Public domain | W3C validator |