HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilid Structured version   Visualization version   GIF version

Theorem hilid 29889
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilid (GId‘ + ) = 0

Proof of Theorem hilid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 29888 . . . 4 + ∈ AbelOp
2 ablogrpo 29275 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-hfvadd 29728 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
54fdmi 6676 . . . . 5 dom + = ( ℋ × ℋ)
63, 5grporn 29249 . . . 4 ℋ = ran +
7 eqid 2738 . . . 4 (GId‘ + ) = (GId‘ + )
86, 7grpoidval 29241 . . 3 ( + ∈ GrpOp → (GId‘ + ) = (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥))
93, 8ax-mp 5 . 2 (GId‘ + ) = (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥)
10 hvaddid2 29751 . . . 4 (𝑥 ∈ ℋ → (0 + 𝑥) = 𝑥)
1110rgen 3065 . . 3 𝑥 ∈ ℋ (0 + 𝑥) = 𝑥
12 ax-hv0cl 29731 . . . 4 0 ∈ ℋ
136grpoideu 29237 . . . . 5 ( + ∈ GrpOp → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥)
143, 13ax-mp 5 . . . 4 ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥
15 oveq1 7357 . . . . . . 7 (𝑦 = 0 → (𝑦 + 𝑥) = (0 + 𝑥))
1615eqeq1d 2740 . . . . . 6 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥))
1716ralbidv 3173 . . . . 5 (𝑦 = 0 → (∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥))
1817riota2 7332 . . . 4 ((0 ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) → (∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥 ↔ (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0))
1912, 14, 18mp2an 691 . . 3 (∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥 ↔ (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0)
2011, 19mpbi 229 . 2 (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0
219, 20eqtri 2766 1 (GId‘ + ) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  wral 3063  ∃!wreu 3350   × cxp 5629  cfv 6492  crio 7305  (class class class)co 7350  GrpOpcgr 29217  GIdcgi 29218  AbelOpcablo 29272  chba 29647   + cva 29648  0c0v 29652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-hilex 29727  ax-hfvadd 29728  ax-hvcom 29729  ax-hvass 29730  ax-hv0cl 29731  ax-hvaddid 29732  ax-hfvmul 29733  ax-hvmulid 29734  ax-hvdistr2 29737  ax-hvmul0 29738
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-ltxr 11128  df-sub 11321  df-neg 11322  df-grpo 29221  df-gid 29222  df-ablo 29273  df-hvsub 29699
This theorem is referenced by:  hhnv  29893  hh0v  29896  hhssabloilem  29989
  Copyright terms: Public domain W3C validator