HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilid Structured version   Visualization version   GIF version

Theorem hilid 31141
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilid (GId‘ + ) = 0

Proof of Theorem hilid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 31140 . . . 4 + ∈ AbelOp
2 ablogrpo 30527 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-hfvadd 30980 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
54fdmi 6662 . . . . 5 dom + = ( ℋ × ℋ)
63, 5grporn 30501 . . . 4 ℋ = ran +
7 eqid 2731 . . . 4 (GId‘ + ) = (GId‘ + )
86, 7grpoidval 30493 . . 3 ( + ∈ GrpOp → (GId‘ + ) = (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥))
93, 8ax-mp 5 . 2 (GId‘ + ) = (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥)
10 hvaddlid 31003 . . . 4 (𝑥 ∈ ℋ → (0 + 𝑥) = 𝑥)
1110rgen 3049 . . 3 𝑥 ∈ ℋ (0 + 𝑥) = 𝑥
12 ax-hv0cl 30983 . . . 4 0 ∈ ℋ
136grpoideu 30489 . . . . 5 ( + ∈ GrpOp → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥)
143, 13ax-mp 5 . . . 4 ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥
15 oveq1 7353 . . . . . . 7 (𝑦 = 0 → (𝑦 + 𝑥) = (0 + 𝑥))
1615eqeq1d 2733 . . . . . 6 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥))
1716ralbidv 3155 . . . . 5 (𝑦 = 0 → (∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥))
1817riota2 7328 . . . 4 ((0 ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) → (∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥 ↔ (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0))
1912, 14, 18mp2an 692 . . 3 (∀𝑥 ∈ ℋ (0 + 𝑥) = 𝑥 ↔ (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0)
2011, 19mpbi 230 . 2 (𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 + 𝑥) = 𝑥) = 0
219, 20eqtri 2754 1 (GId‘ + ) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344   × cxp 5612  cfv 6481  crio 7302  (class class class)co 7346  GrpOpcgr 30469  GIdcgi 30470  AbelOpcablo 30524  chba 30899   + cva 30900  0c0v 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvdistr2 30989  ax-hvmul0 30990
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-grpo 30473  df-gid 30474  df-ablo 30525  df-hvsub 30951
This theorem is referenced by:  hhnv  31145  hh0v  31148  hhssabloilem  31241
  Copyright terms: Public domain W3C validator