![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hilid | Structured version Visualization version GIF version |
Description: The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hilid | ⊢ (GId‘ +ℎ ) = 0ℎ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilablo 30678 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
2 | ablogrpo 30065 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
4 | ax-hfvadd 30518 | . . . . . 6 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
5 | 4 | fdmi 6730 | . . . . 5 ⊢ dom +ℎ = ( ℋ × ℋ) |
6 | 3, 5 | grporn 30039 | . . . 4 ⊢ ℋ = ran +ℎ |
7 | eqid 2730 | . . . 4 ⊢ (GId‘ +ℎ ) = (GId‘ +ℎ ) | |
8 | 6, 7 | grpoidval 30031 | . . 3 ⊢ ( +ℎ ∈ GrpOp → (GId‘ +ℎ ) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥)) |
9 | 3, 8 | ax-mp 5 | . 2 ⊢ (GId‘ +ℎ ) = (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) |
10 | hvaddlid 30541 | . . . 4 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
11 | 10 | rgen 3061 | . . 3 ⊢ ∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 |
12 | ax-hv0cl 30521 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
13 | 6 | grpoideu 30027 | . . . . 5 ⊢ ( +ℎ ∈ GrpOp → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) |
14 | 3, 13 | ax-mp 5 | . . . 4 ⊢ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥 |
15 | oveq1 7420 | . . . . . . 7 ⊢ (𝑦 = 0ℎ → (𝑦 +ℎ 𝑥) = (0ℎ +ℎ 𝑥)) | |
16 | 15 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑦 = 0ℎ → ((𝑦 +ℎ 𝑥) = 𝑥 ↔ (0ℎ +ℎ 𝑥) = 𝑥)) |
17 | 16 | ralbidv 3175 | . . . . 5 ⊢ (𝑦 = 0ℎ → (∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥)) |
18 | 17 | riota2 7395 | . . . 4 ⊢ ((0ℎ ∈ ℋ ∧ ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) → (∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ)) |
19 | 12, 14, 18 | mp2an 688 | . . 3 ⊢ (∀𝑥 ∈ ℋ (0ℎ +ℎ 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ) |
20 | 11, 19 | mpbi 229 | . 2 ⊢ (℩𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 +ℎ 𝑥) = 𝑥) = 0ℎ |
21 | 9, 20 | eqtri 2758 | 1 ⊢ (GId‘ +ℎ ) = 0ℎ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∃!wreu 3372 × cxp 5675 ‘cfv 6544 ℩crio 7368 (class class class)co 7413 GrpOpcgr 30007 GIdcgi 30008 AbelOpcablo 30062 ℋchba 30437 +ℎ cva 30438 0ℎc0v 30442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-hilex 30517 ax-hfvadd 30518 ax-hvcom 30519 ax-hvass 30520 ax-hv0cl 30521 ax-hvaddid 30522 ax-hfvmul 30523 ax-hvmulid 30524 ax-hvdistr2 30527 ax-hvmul0 30528 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-ltxr 11259 df-sub 11452 df-neg 11453 df-grpo 30011 df-gid 30012 df-ablo 30063 df-hvsub 30489 |
This theorem is referenced by: hhnv 30683 hh0v 30686 hhssabloilem 30779 |
Copyright terms: Public domain | W3C validator |