HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem2 Structured version   Visualization version   GIF version

Theorem 5oalem2 31634
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem2.1 𝐴S
5oalem2.2 𝐵S
5oalem2.3 𝐶S
5oalem2.4 𝐷S
Assertion
Ref Expression
5oalem2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))

Proof of Theorem 5oalem2
StepHypRef Expression
1 5oalem2.1 . . . . 5 𝐴S
2 5oalem2.3 . . . . 5 𝐶S
31, 2shsvsi 31346 . . . 4 ((𝑥𝐴𝑧𝐶) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
43ad2ant2r 747 . . 3 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
54adantr 480 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
6 5oalem2.4 . . . . . . . 8 𝐷S
7 5oalem2.2 . . . . . . . 8 𝐵S
86, 7shsvsi 31346 . . . . . . 7 ((𝑤𝐷𝑦𝐵) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
98ancoms 458 . . . . . 6 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
107, 6shscomi 31342 . . . . . 6 (𝐵 + 𝐷) = (𝐷 + 𝐵)
119, 10eleqtrrdi 2839 . . . . 5 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1211ad2ant2l 746 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1312adantr 480 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
141sheli 31193 . . . . . 6 (𝑥𝐴𝑥 ∈ ℋ)
157sheli 31193 . . . . . 6 (𝑦𝐵𝑦 ∈ ℋ)
1614, 15anim12i 613 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
172sheli 31193 . . . . . 6 (𝑧𝐶𝑧 ∈ ℋ)
186sheli 31193 . . . . . 6 (𝑤𝐷𝑤 ∈ ℋ)
1917, 18anim12i 613 . . . . 5 ((𝑧𝐶𝑤𝐷) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
2016, 19anim12i 613 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
21 oveq1 7376 . . . . . . 7 ((𝑥 + 𝑦) = (𝑧 + 𝑤) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
2221adantl 481 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
23 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
2423anim2i 617 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
2524ancoms 458 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
26 hvsub4 31016 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
2725, 26syldan 591 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
28 hvsubid 31005 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (𝑦 𝑦) = 0)
2928oveq2d 7385 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
3029ad2antlr 727 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
31 hvsubcl 30996 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
32 ax-hvaddid 30983 . . . . . . . . . . 11 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3331, 32syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3433adantlr 715 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3527, 30, 343eqtrd 2768 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3635adantrr 717 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3736adantr 480 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
38 simpr 484 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 simpl 482 . . . . . . . . . . . 12 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
4039anim1i 615 . . . . . . . . . . 11 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
4140ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
42 hvsub4 31016 . . . . . . . . . 10 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
4338, 41, 42syl2anc 584 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
44 hvsubid 31005 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
4544oveq1d 7384 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
4645ad2antrl 728 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
47 hvsubcl 30996 . . . . . . . . . . . 12 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑤 𝑦) ∈ ℋ)
48 hvaddlid 31002 . . . . . . . . . . . 12 ((𝑤 𝑦) ∈ ℋ → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
4947, 48syl 17 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5049ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5150adantrl 716 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5243, 46, 513eqtrd 2768 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5352adantll 714 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5453adantr 480 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5522, 37, 543eqtr3d 2772 . . . . 5 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) = (𝑤 𝑦))
5655eleq1d 2813 . . . 4 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5720, 56sylan 580 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5813, 57mpbird 257 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐵 + 𝐷))
595, 58elind 4159 1 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3910  (class class class)co 7369  chba 30898   + cva 30899  0c0v 30903   cmv 30904   S csh 30907   + cph 30910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvdistr1 30987  ax-hvdistr2 30988  ax-hvmul0 30989
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-neg 11384  df-nn 12163  df-grpo 30472  df-ablo 30524  df-hvsub 30950  df-hlim 30951  df-sh 31186  df-ch 31200  df-shs 31287
This theorem is referenced by:  5oalem3  31635  5oalem4  31636
  Copyright terms: Public domain W3C validator