HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem2 Structured version   Visualization version   GIF version

Theorem 5oalem2 30895
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem2.1 𝐴S
5oalem2.2 𝐵S
5oalem2.3 𝐶S
5oalem2.4 𝐷S
Assertion
Ref Expression
5oalem2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))

Proof of Theorem 5oalem2
StepHypRef Expression
1 5oalem2.1 . . . . 5 𝐴S
2 5oalem2.3 . . . . 5 𝐶S
31, 2shsvsi 30607 . . . 4 ((𝑥𝐴𝑧𝐶) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
43ad2ant2r 745 . . 3 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
54adantr 481 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
6 5oalem2.4 . . . . . . . 8 𝐷S
7 5oalem2.2 . . . . . . . 8 𝐵S
86, 7shsvsi 30607 . . . . . . 7 ((𝑤𝐷𝑦𝐵) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
98ancoms 459 . . . . . 6 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
107, 6shscomi 30603 . . . . . 6 (𝐵 + 𝐷) = (𝐷 + 𝐵)
119, 10eleqtrrdi 2844 . . . . 5 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1211ad2ant2l 744 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1312adantr 481 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
141sheli 30454 . . . . . 6 (𝑥𝐴𝑥 ∈ ℋ)
157sheli 30454 . . . . . 6 (𝑦𝐵𝑦 ∈ ℋ)
1614, 15anim12i 613 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
172sheli 30454 . . . . . 6 (𝑧𝐶𝑧 ∈ ℋ)
186sheli 30454 . . . . . 6 (𝑤𝐷𝑤 ∈ ℋ)
1917, 18anim12i 613 . . . . 5 ((𝑧𝐶𝑤𝐷) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
2016, 19anim12i 613 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
21 oveq1 7412 . . . . . . 7 ((𝑥 + 𝑦) = (𝑧 + 𝑤) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
2221adantl 482 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
23 simpr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
2423anim2i 617 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
2524ancoms 459 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
26 hvsub4 30277 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
2725, 26syldan 591 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
28 hvsubid 30266 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (𝑦 𝑦) = 0)
2928oveq2d 7421 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
3029ad2antlr 725 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
31 hvsubcl 30257 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
32 ax-hvaddid 30244 . . . . . . . . . . 11 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3331, 32syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3433adantlr 713 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3527, 30, 343eqtrd 2776 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3635adantrr 715 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3736adantr 481 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
38 simpr 485 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 simpl 483 . . . . . . . . . . . 12 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
4039anim1i 615 . . . . . . . . . . 11 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
4140ancoms 459 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
42 hvsub4 30277 . . . . . . . . . 10 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
4338, 41, 42syl2anc 584 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
44 hvsubid 30266 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
4544oveq1d 7420 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
4645ad2antrl 726 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
47 hvsubcl 30257 . . . . . . . . . . . 12 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑤 𝑦) ∈ ℋ)
48 hvaddlid 30263 . . . . . . . . . . . 12 ((𝑤 𝑦) ∈ ℋ → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
4947, 48syl 17 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5049ancoms 459 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5150adantrl 714 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5243, 46, 513eqtrd 2776 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5352adantll 712 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5453adantr 481 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5522, 37, 543eqtr3d 2780 . . . . 5 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) = (𝑤 𝑦))
5655eleq1d 2818 . . . 4 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5720, 56sylan 580 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5813, 57mpbird 256 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐵 + 𝐷))
595, 58elind 4193 1 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cin 3946  (class class class)co 7405  chba 30159   + cva 30160  0c0v 30164   cmv 30165   S csh 30168   + cph 30171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-hilex 30239  ax-hfvadd 30240  ax-hvcom 30241  ax-hvass 30242  ax-hv0cl 30243  ax-hvaddid 30244  ax-hfvmul 30245  ax-hvmulid 30246  ax-hvdistr1 30248  ax-hvdistr2 30249  ax-hvmul0 30250
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sub 11442  df-neg 11443  df-nn 12209  df-grpo 29733  df-ablo 29785  df-hvsub 30211  df-hlim 30212  df-sh 30447  df-ch 30461  df-shs 30548
This theorem is referenced by:  5oalem3  30896  5oalem4  30897
  Copyright terms: Public domain W3C validator