HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem2 Structured version   Visualization version   GIF version

Theorem 5oalem2 30017
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem2.1 𝐴S
5oalem2.2 𝐵S
5oalem2.3 𝐶S
5oalem2.4 𝐷S
Assertion
Ref Expression
5oalem2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))

Proof of Theorem 5oalem2
StepHypRef Expression
1 5oalem2.1 . . . . 5 𝐴S
2 5oalem2.3 . . . . 5 𝐶S
31, 2shsvsi 29729 . . . 4 ((𝑥𝐴𝑧𝐶) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
43ad2ant2r 744 . . 3 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
54adantr 481 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
6 5oalem2.4 . . . . . . . 8 𝐷S
7 5oalem2.2 . . . . . . . 8 𝐵S
86, 7shsvsi 29729 . . . . . . 7 ((𝑤𝐷𝑦𝐵) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
98ancoms 459 . . . . . 6 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
107, 6shscomi 29725 . . . . . 6 (𝐵 + 𝐷) = (𝐷 + 𝐵)
119, 10eleqtrrdi 2850 . . . . 5 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1211ad2ant2l 743 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1312adantr 481 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
141sheli 29576 . . . . . 6 (𝑥𝐴𝑥 ∈ ℋ)
157sheli 29576 . . . . . 6 (𝑦𝐵𝑦 ∈ ℋ)
1614, 15anim12i 613 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
172sheli 29576 . . . . . 6 (𝑧𝐶𝑧 ∈ ℋ)
186sheli 29576 . . . . . 6 (𝑤𝐷𝑤 ∈ ℋ)
1917, 18anim12i 613 . . . . 5 ((𝑧𝐶𝑤𝐷) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
2016, 19anim12i 613 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
21 oveq1 7282 . . . . . . 7 ((𝑥 + 𝑦) = (𝑧 + 𝑤) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
2221adantl 482 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
23 simpr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
2423anim2i 617 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
2524ancoms 459 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
26 hvsub4 29399 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
2725, 26syldan 591 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
28 hvsubid 29388 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (𝑦 𝑦) = 0)
2928oveq2d 7291 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
3029ad2antlr 724 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
31 hvsubcl 29379 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
32 ax-hvaddid 29366 . . . . . . . . . . 11 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3331, 32syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3433adantlr 712 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3527, 30, 343eqtrd 2782 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3635adantrr 714 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3736adantr 481 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
38 simpr 485 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 simpl 483 . . . . . . . . . . . 12 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
4039anim1i 615 . . . . . . . . . . 11 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
4140ancoms 459 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
42 hvsub4 29399 . . . . . . . . . 10 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
4338, 41, 42syl2anc 584 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
44 hvsubid 29388 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
4544oveq1d 7290 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
4645ad2antrl 725 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
47 hvsubcl 29379 . . . . . . . . . . . 12 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑤 𝑦) ∈ ℋ)
48 hvaddid2 29385 . . . . . . . . . . . 12 ((𝑤 𝑦) ∈ ℋ → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
4947, 48syl 17 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5049ancoms 459 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5150adantrl 713 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5243, 46, 513eqtrd 2782 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5352adantll 711 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5453adantr 481 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5522, 37, 543eqtr3d 2786 . . . . 5 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) = (𝑤 𝑦))
5655eleq1d 2823 . . . 4 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5720, 56sylan 580 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5813, 57mpbird 256 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐵 + 𝐷))
595, 58elind 4128 1 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cin 3886  (class class class)co 7275  chba 29281   + cva 29282  0c0v 29286   cmv 29287   S csh 29290   + cph 29293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-nn 11974  df-grpo 28855  df-ablo 28907  df-hvsub 29333  df-hlim 29334  df-sh 29569  df-ch 29583  df-shs 29670
This theorem is referenced by:  5oalem3  30018  5oalem4  30019
  Copyright terms: Public domain W3C validator