HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem2 Structured version   Visualization version   GIF version

Theorem 5oalem2 31591
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem2.1 𝐴S
5oalem2.2 𝐵S
5oalem2.3 𝐶S
5oalem2.4 𝐷S
Assertion
Ref Expression
5oalem2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))

Proof of Theorem 5oalem2
StepHypRef Expression
1 5oalem2.1 . . . . 5 𝐴S
2 5oalem2.3 . . . . 5 𝐶S
31, 2shsvsi 31303 . . . 4 ((𝑥𝐴𝑧𝐶) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
43ad2ant2r 747 . . 3 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
54adantr 480 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
6 5oalem2.4 . . . . . . . 8 𝐷S
7 5oalem2.2 . . . . . . . 8 𝐵S
86, 7shsvsi 31303 . . . . . . 7 ((𝑤𝐷𝑦𝐵) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
98ancoms 458 . . . . . 6 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
107, 6shscomi 31299 . . . . . 6 (𝐵 + 𝐷) = (𝐷 + 𝐵)
119, 10eleqtrrdi 2840 . . . . 5 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1211ad2ant2l 746 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1312adantr 480 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
141sheli 31150 . . . . . 6 (𝑥𝐴𝑥 ∈ ℋ)
157sheli 31150 . . . . . 6 (𝑦𝐵𝑦 ∈ ℋ)
1614, 15anim12i 613 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
172sheli 31150 . . . . . 6 (𝑧𝐶𝑧 ∈ ℋ)
186sheli 31150 . . . . . 6 (𝑤𝐷𝑤 ∈ ℋ)
1917, 18anim12i 613 . . . . 5 ((𝑧𝐶𝑤𝐷) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
2016, 19anim12i 613 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
21 oveq1 7397 . . . . . . 7 ((𝑥 + 𝑦) = (𝑧 + 𝑤) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
2221adantl 481 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
23 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
2423anim2i 617 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
2524ancoms 458 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
26 hvsub4 30973 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
2725, 26syldan 591 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
28 hvsubid 30962 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (𝑦 𝑦) = 0)
2928oveq2d 7406 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
3029ad2antlr 727 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
31 hvsubcl 30953 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
32 ax-hvaddid 30940 . . . . . . . . . . 11 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3331, 32syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3433adantlr 715 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3527, 30, 343eqtrd 2769 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3635adantrr 717 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3736adantr 480 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
38 simpr 484 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 simpl 482 . . . . . . . . . . . 12 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
4039anim1i 615 . . . . . . . . . . 11 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
4140ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
42 hvsub4 30973 . . . . . . . . . 10 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
4338, 41, 42syl2anc 584 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
44 hvsubid 30962 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
4544oveq1d 7405 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
4645ad2antrl 728 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
47 hvsubcl 30953 . . . . . . . . . . . 12 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑤 𝑦) ∈ ℋ)
48 hvaddlid 30959 . . . . . . . . . . . 12 ((𝑤 𝑦) ∈ ℋ → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
4947, 48syl 17 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5049ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5150adantrl 716 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5243, 46, 513eqtrd 2769 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5352adantll 714 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5453adantr 480 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5522, 37, 543eqtr3d 2773 . . . . 5 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) = (𝑤 𝑦))
5655eleq1d 2814 . . . 4 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5720, 56sylan 580 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5813, 57mpbird 257 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐵 + 𝐷))
595, 58elind 4166 1 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3916  (class class class)co 7390  chba 30855   + cva 30856  0c0v 30860   cmv 30861   S csh 30864   + cph 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414  df-neg 11415  df-nn 12194  df-grpo 30429  df-ablo 30481  df-hvsub 30907  df-hlim 30908  df-sh 31143  df-ch 31157  df-shs 31244
This theorem is referenced by:  5oalem3  31592  5oalem4  31593
  Copyright terms: Public domain W3C validator