HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem2 Structured version   Visualization version   GIF version

Theorem 5oalem2 29918
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem2.1 𝐴S
5oalem2.2 𝐵S
5oalem2.3 𝐶S
5oalem2.4 𝐷S
Assertion
Ref Expression
5oalem2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))

Proof of Theorem 5oalem2
StepHypRef Expression
1 5oalem2.1 . . . . 5 𝐴S
2 5oalem2.3 . . . . 5 𝐶S
31, 2shsvsi 29630 . . . 4 ((𝑥𝐴𝑧𝐶) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
43ad2ant2r 743 . . 3 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
54adantr 480 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐴 + 𝐶))
6 5oalem2.4 . . . . . . . 8 𝐷S
7 5oalem2.2 . . . . . . . 8 𝐵S
86, 7shsvsi 29630 . . . . . . 7 ((𝑤𝐷𝑦𝐵) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
98ancoms 458 . . . . . 6 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐷 + 𝐵))
107, 6shscomi 29626 . . . . . 6 (𝐵 + 𝐷) = (𝐷 + 𝐵)
119, 10eleqtrrdi 2850 . . . . 5 ((𝑦𝐵𝑤𝐷) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1211ad2ant2l 742 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
1312adantr 480 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑤 𝑦) ∈ (𝐵 + 𝐷))
141sheli 29477 . . . . . 6 (𝑥𝐴𝑥 ∈ ℋ)
157sheli 29477 . . . . . 6 (𝑦𝐵𝑦 ∈ ℋ)
1614, 15anim12i 612 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
172sheli 29477 . . . . . 6 (𝑧𝐶𝑧 ∈ ℋ)
186sheli 29477 . . . . . 6 (𝑤𝐷𝑤 ∈ ℋ)
1917, 18anim12i 612 . . . . 5 ((𝑧𝐶𝑤𝐷) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
2016, 19anim12i 612 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
21 oveq1 7262 . . . . . . 7 ((𝑥 + 𝑦) = (𝑧 + 𝑤) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
2221adantl 481 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑧 + 𝑤) − (𝑧 + 𝑦)))
23 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
2423anim2i 616 . . . . . . . . . . 11 ((𝑧 ∈ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
2524ancoms 458 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
26 hvsub4 29300 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
2725, 26syldan 590 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = ((𝑥 𝑧) + (𝑦 𝑦)))
28 hvsubid 29289 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (𝑦 𝑦) = 0)
2928oveq2d 7271 . . . . . . . . . 10 (𝑦 ∈ ℋ → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
3029ad2antlr 723 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + (𝑦 𝑦)) = ((𝑥 𝑧) + 0))
31 hvsubcl 29280 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
32 ax-hvaddid 29267 . . . . . . . . . . 11 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3331, 32syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3433adantlr 711 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) + 0) = (𝑥 𝑧))
3527, 30, 343eqtrd 2782 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3635adantrr 713 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
3736adantr 480 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑧 + 𝑦)) = (𝑥 𝑧))
38 simpr 484 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 simpl 482 . . . . . . . . . . . 12 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑧 ∈ ℋ)
4039anim1i 614 . . . . . . . . . . 11 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
4140ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ))
42 hvsub4 29300 . . . . . . . . . 10 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
4338, 41, 42syl2anc 583 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = ((𝑧 𝑧) + (𝑤 𝑦)))
44 hvsubid 29289 . . . . . . . . . . 11 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
4544oveq1d 7270 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
4645ad2antrl 724 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑧) + (𝑤 𝑦)) = (0 + (𝑤 𝑦)))
47 hvsubcl 29280 . . . . . . . . . . . 12 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑤 𝑦) ∈ ℋ)
48 hvaddid2 29286 . . . . . . . . . . . 12 ((𝑤 𝑦) ∈ ℋ → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
4947, 48syl 17 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5049ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5150adantrl 712 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (0 + (𝑤 𝑦)) = (𝑤 𝑦))
5243, 46, 513eqtrd 2782 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5352adantll 710 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5453adantr 480 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑧 + 𝑤) − (𝑧 + 𝑦)) = (𝑤 𝑦))
5522, 37, 543eqtr3d 2786 . . . . 5 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) = (𝑤 𝑦))
5655eleq1d 2823 . . . 4 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5720, 56sylan 579 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → ((𝑥 𝑧) ∈ (𝐵 + 𝐷) ↔ (𝑤 𝑦) ∈ (𝐵 + 𝐷)))
5813, 57mpbird 256 . 2 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ (𝐵 + 𝐷))
595, 58elind 4124 1 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑥 + 𝑦) = (𝑧 + 𝑤)) → (𝑥 𝑧) ∈ ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cin 3882  (class class class)co 7255  chba 29182   + cva 29183  0c0v 29187   cmv 29188   S csh 29191   + cph 29194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-nn 11904  df-grpo 28756  df-ablo 28808  df-hvsub 29234  df-hlim 29235  df-sh 29470  df-ch 29484  df-shs 29571
This theorem is referenced by:  5oalem3  29919  5oalem4  29920
  Copyright terms: Public domain W3C validator