HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ifhvhv0 Structured version   Visualization version   GIF version

Theorem ifhvhv0 29285
Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.)
Assertion
Ref Expression
ifhvhv0 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ

Proof of Theorem ifhvhv0
StepHypRef Expression
1 ax-hv0cl 29266 . 2 0 ∈ ℋ
21elimel 4525 1 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  ifcif 4456  chba 29182  0c0v 29187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-hv0cl 29266
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-if 4457
This theorem is referenced by:  hvsubsub4  29323  hvnegdi  29330  hvsubeq0  29331  hvaddcan  29333  hvsubadd  29340  normlem9at  29384  normsq  29397  normsub0  29399  norm-ii  29401  norm-iii  29403  normsub  29406  normpyth  29408  norm3dif  29413  norm3lemt  29415  norm3adifi  29416  normpar  29418  polid  29422  bcs  29444  pjoc1  29697  pjoc2  29702  h1de2ci  29819  spansn  29822  elspansn  29829  elspansn2  29830  h1datom  29845  spansnj  29910  spansncv  29916  pjch1  29933  pjadji  29948  pjaddi  29949  pjinormi  29950  pjsubi  29951  pjmuli  29952  pjcjt2  29955  pjch  29957  pjopyth  29983  pjnorm  29987  pjpyth  29988  pjnel  29989  eigre  30098  eigorth  30101  lnopeq0lem2  30269  lnopunii  30275  lnophmi  30281  pjss2coi  30427  pjssmi  30428  pjssge0i  30429  pjdifnormi  30430
  Copyright terms: Public domain W3C validator