| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version | ||
| Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30939 | . 2 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | elimel 4561 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4491 ℋchba 30855 0ℎc0v 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-hv0cl 30939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: hvsubsub4 30996 hvnegdi 31003 hvsubeq0 31004 hvaddcan 31006 hvsubadd 31013 normlem9at 31057 normsq 31070 normsub0 31072 norm-ii 31074 norm-iii 31076 normsub 31079 normpyth 31081 norm3dif 31086 norm3lemt 31088 norm3adifi 31089 normpar 31091 polid 31095 bcs 31117 pjoc1 31370 pjoc2 31375 h1de2ci 31492 spansn 31495 elspansn 31502 elspansn2 31503 h1datom 31518 spansnj 31583 spansncv 31589 pjch1 31606 pjadji 31621 pjaddi 31622 pjinormi 31623 pjsubi 31624 pjmuli 31625 pjcjt2 31628 pjch 31630 pjopyth 31656 pjnorm 31660 pjpyth 31661 pjnel 31662 eigre 31771 eigorth 31774 lnopeq0lem2 31942 lnopunii 31948 lnophmi 31954 pjss2coi 32100 pjssmi 32101 pjssge0i 32102 pjdifnormi 32103 |
| Copyright terms: Public domain | W3C validator |