| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version | ||
| Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30932 | . 2 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | elimel 4558 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4488 ℋchba 30848 0ℎc0v 30853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-hv0cl 30932 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: hvsubsub4 30989 hvnegdi 30996 hvsubeq0 30997 hvaddcan 30999 hvsubadd 31006 normlem9at 31050 normsq 31063 normsub0 31065 norm-ii 31067 norm-iii 31069 normsub 31072 normpyth 31074 norm3dif 31079 norm3lemt 31081 norm3adifi 31082 normpar 31084 polid 31088 bcs 31110 pjoc1 31363 pjoc2 31368 h1de2ci 31485 spansn 31488 elspansn 31495 elspansn2 31496 h1datom 31511 spansnj 31576 spansncv 31582 pjch1 31599 pjadji 31614 pjaddi 31615 pjinormi 31616 pjsubi 31617 pjmuli 31618 pjcjt2 31621 pjch 31623 pjopyth 31649 pjnorm 31653 pjpyth 31654 pjnel 31655 eigre 31764 eigorth 31767 lnopeq0lem2 31935 lnopunii 31941 lnophmi 31947 pjss2coi 32093 pjssmi 32094 pjssge0i 32095 pjdifnormi 32096 |
| Copyright terms: Public domain | W3C validator |