| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version | ||
| Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30973 | . 2 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | elimel 4543 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 ifcif 4473 ℋchba 30889 0ℎc0v 30894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-hv0cl 30973 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4474 |
| This theorem is referenced by: hvsubsub4 31030 hvnegdi 31037 hvsubeq0 31038 hvaddcan 31040 hvsubadd 31047 normlem9at 31091 normsq 31104 normsub0 31106 norm-ii 31108 norm-iii 31110 normsub 31113 normpyth 31115 norm3dif 31120 norm3lemt 31122 norm3adifi 31123 normpar 31125 polid 31129 bcs 31151 pjoc1 31404 pjoc2 31409 h1de2ci 31526 spansn 31529 elspansn 31536 elspansn2 31537 h1datom 31552 spansnj 31617 spansncv 31623 pjch1 31640 pjadji 31655 pjaddi 31656 pjinormi 31657 pjsubi 31658 pjmuli 31659 pjcjt2 31662 pjch 31664 pjopyth 31690 pjnorm 31694 pjpyth 31695 pjnel 31696 eigre 31805 eigorth 31808 lnopeq0lem2 31976 lnopunii 31982 lnophmi 31988 pjss2coi 32134 pjssmi 32135 pjssge0i 32136 pjdifnormi 32137 |
| Copyright terms: Public domain | W3C validator |