Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version |
Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29266 | . 2 ⊢ 0ℎ ∈ ℋ | |
2 | 1 | elimel 4525 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ifcif 4456 ℋchba 29182 0ℎc0v 29187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-hv0cl 29266 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: hvsubsub4 29323 hvnegdi 29330 hvsubeq0 29331 hvaddcan 29333 hvsubadd 29340 normlem9at 29384 normsq 29397 normsub0 29399 norm-ii 29401 norm-iii 29403 normsub 29406 normpyth 29408 norm3dif 29413 norm3lemt 29415 norm3adifi 29416 normpar 29418 polid 29422 bcs 29444 pjoc1 29697 pjoc2 29702 h1de2ci 29819 spansn 29822 elspansn 29829 elspansn2 29830 h1datom 29845 spansnj 29910 spansncv 29916 pjch1 29933 pjadji 29948 pjaddi 29949 pjinormi 29950 pjsubi 29951 pjmuli 29952 pjcjt2 29955 pjch 29957 pjopyth 29983 pjnorm 29987 pjpyth 29988 pjnel 29989 eigre 30098 eigorth 30101 lnopeq0lem2 30269 lnopunii 30275 lnophmi 30281 pjss2coi 30427 pjssmi 30428 pjssge0i 30429 pjdifnormi 30430 |
Copyright terms: Public domain | W3C validator |