| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version | ||
| Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30989 | . 2 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | elimel 4575 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4505 ℋchba 30905 0ℎc0v 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-hv0cl 30989 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-if 4506 |
| This theorem is referenced by: hvsubsub4 31046 hvnegdi 31053 hvsubeq0 31054 hvaddcan 31056 hvsubadd 31063 normlem9at 31107 normsq 31120 normsub0 31122 norm-ii 31124 norm-iii 31126 normsub 31129 normpyth 31131 norm3dif 31136 norm3lemt 31138 norm3adifi 31139 normpar 31141 polid 31145 bcs 31167 pjoc1 31420 pjoc2 31425 h1de2ci 31542 spansn 31545 elspansn 31552 elspansn2 31553 h1datom 31568 spansnj 31633 spansncv 31639 pjch1 31656 pjadji 31671 pjaddi 31672 pjinormi 31673 pjsubi 31674 pjmuli 31675 pjcjt2 31678 pjch 31680 pjopyth 31706 pjnorm 31710 pjpyth 31711 pjnel 31712 eigre 31821 eigorth 31824 lnopeq0lem2 31992 lnopunii 31998 lnophmi 32004 pjss2coi 32150 pjssmi 32151 pjssge0i 32152 pjdifnormi 32153 |
| Copyright terms: Public domain | W3C validator |