![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version |
Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 31035 | . 2 ⊢ 0ℎ ∈ ℋ | |
2 | 1 | elimel 4617 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ifcif 4548 ℋchba 30951 0ℎc0v 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-hv0cl 31035 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: hvsubsub4 31092 hvnegdi 31099 hvsubeq0 31100 hvaddcan 31102 hvsubadd 31109 normlem9at 31153 normsq 31166 normsub0 31168 norm-ii 31170 norm-iii 31172 normsub 31175 normpyth 31177 norm3dif 31182 norm3lemt 31184 norm3adifi 31185 normpar 31187 polid 31191 bcs 31213 pjoc1 31466 pjoc2 31471 h1de2ci 31588 spansn 31591 elspansn 31598 elspansn2 31599 h1datom 31614 spansnj 31679 spansncv 31685 pjch1 31702 pjadji 31717 pjaddi 31718 pjinormi 31719 pjsubi 31720 pjmuli 31721 pjcjt2 31724 pjch 31726 pjopyth 31752 pjnorm 31756 pjpyth 31757 pjnel 31758 eigre 31867 eigorth 31870 lnopeq0lem2 32038 lnopunii 32044 lnophmi 32050 pjss2coi 32196 pjssmi 32197 pjssge0i 32198 pjdifnormi 32199 |
Copyright terms: Public domain | W3C validator |