| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version | ||
| Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30994 | . 2 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | elimel 4546 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ifcif 4476 ℋchba 30910 0ℎc0v 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-hv0cl 30994 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4477 |
| This theorem is referenced by: hvsubsub4 31051 hvnegdi 31058 hvsubeq0 31059 hvaddcan 31061 hvsubadd 31068 normlem9at 31112 normsq 31125 normsub0 31127 norm-ii 31129 norm-iii 31131 normsub 31134 normpyth 31136 norm3dif 31141 norm3lemt 31143 norm3adifi 31144 normpar 31146 polid 31150 bcs 31172 pjoc1 31425 pjoc2 31430 h1de2ci 31547 spansn 31550 elspansn 31557 elspansn2 31558 h1datom 31573 spansnj 31638 spansncv 31644 pjch1 31661 pjadji 31676 pjaddi 31677 pjinormi 31678 pjsubi 31679 pjmuli 31680 pjcjt2 31683 pjch 31685 pjopyth 31711 pjnorm 31715 pjpyth 31716 pjnel 31717 eigre 31826 eigorth 31829 lnopeq0lem2 31997 lnopunii 32003 lnophmi 32009 pjss2coi 32155 pjssmi 32156 pjssge0i 32157 pjdifnormi 32158 |
| Copyright terms: Public domain | W3C validator |