![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version |
Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30256 | . 2 ⊢ 0ℎ ∈ ℋ | |
2 | 1 | elimel 4598 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ifcif 4529 ℋchba 30172 0ℎc0v 30177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-hv0cl 30256 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: hvsubsub4 30313 hvnegdi 30320 hvsubeq0 30321 hvaddcan 30323 hvsubadd 30330 normlem9at 30374 normsq 30387 normsub0 30389 norm-ii 30391 norm-iii 30393 normsub 30396 normpyth 30398 norm3dif 30403 norm3lemt 30405 norm3adifi 30406 normpar 30408 polid 30412 bcs 30434 pjoc1 30687 pjoc2 30692 h1de2ci 30809 spansn 30812 elspansn 30819 elspansn2 30820 h1datom 30835 spansnj 30900 spansncv 30906 pjch1 30923 pjadji 30938 pjaddi 30939 pjinormi 30940 pjsubi 30941 pjmuli 30942 pjcjt2 30945 pjch 30947 pjopyth 30973 pjnorm 30977 pjpyth 30978 pjnel 30979 eigre 31088 eigorth 31091 lnopeq0lem2 31259 lnopunii 31265 lnophmi 31271 pjss2coi 31417 pjssmi 31418 pjssge0i 31419 pjdifnormi 31420 |
Copyright terms: Public domain | W3C validator |