| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ifhvhv0 | Structured version Visualization version GIF version | ||
| Description: Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ifhvhv0 | ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30965 | . 2 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | elimel 4548 | 1 ⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ifcif 4478 ℋchba 30881 0ℎc0v 30886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-hv0cl 30965 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: hvsubsub4 31022 hvnegdi 31029 hvsubeq0 31030 hvaddcan 31032 hvsubadd 31039 normlem9at 31083 normsq 31096 normsub0 31098 norm-ii 31100 norm-iii 31102 normsub 31105 normpyth 31107 norm3dif 31112 norm3lemt 31114 norm3adifi 31115 normpar 31117 polid 31121 bcs 31143 pjoc1 31396 pjoc2 31401 h1de2ci 31518 spansn 31521 elspansn 31528 elspansn2 31529 h1datom 31544 spansnj 31609 spansncv 31615 pjch1 31632 pjadji 31647 pjaddi 31648 pjinormi 31649 pjsubi 31650 pjmuli 31651 pjcjt2 31654 pjch 31656 pjopyth 31682 pjnorm 31686 pjpyth 31687 pjnel 31688 eigre 31797 eigorth 31800 lnopeq0lem2 31968 lnopunii 31974 lnophmi 31980 pjss2coi 32126 pjssmi 32127 pjssge0i 32128 pjdifnormi 32129 |
| Copyright terms: Public domain | W3C validator |