HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddsub4 Structured version   Visualization version   GIF version

Theorem hvaddsub4 31107
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))

Proof of Theorem hvaddsub4
StepHypRef Expression
1 hvaddcl 31041 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
21adantr 480 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 + 𝐵) ∈ ℋ)
3 hvaddcl 31041 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 + 𝐷) ∈ ℋ)
43adantl 481 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 + 𝐷) ∈ ℋ)
5 hvaddcl 31041 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 + 𝐵) ∈ ℋ)
65ancoms 458 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐶 + 𝐵) ∈ ℋ)
76ad2ant2lr 748 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 + 𝐵) ∈ ℋ)
8 hvsubcan2 31104 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 + 𝐷) ∈ ℋ ∧ (𝐶 + 𝐵) ∈ ℋ) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
92, 4, 7, 8syl3anc 1370 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
10 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ)
1110anim2i 617 . . . . . . 7 ((𝐶 ∈ ℋ ∧ (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
1211ancoms 458 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
13 hvsub4 31066 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐴 𝐶) + (𝐵 𝐵)))
1412, 13syldan 591 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐴 𝐶) + (𝐵 𝐵)))
15 hvsubid 31055 . . . . . . 7 (𝐵 ∈ ℋ → (𝐵 𝐵) = 0)
1615ad2antlr 727 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (𝐵 𝐵) = 0)
1716oveq2d 7447 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + (𝐵 𝐵)) = ((𝐴 𝐶) + 0))
18 hvsubcl 31046 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐶) ∈ ℋ)
19 ax-hvaddid 31033 . . . . . . 7 ((𝐴 𝐶) ∈ ℋ → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2120adantlr 715 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2214, 17, 213eqtrd 2779 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = (𝐴 𝐶))
2322adantrr 717 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = (𝐴 𝐶))
24 simpl 482 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → 𝐶 ∈ ℋ)
2524anim1i 615 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
26 hvsub4 31066 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = ((𝐶 𝐶) + (𝐷 𝐵)))
2725, 26syldan 591 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = ((𝐶 𝐶) + (𝐷 𝐵)))
28 hvsubid 31055 . . . . . . . 8 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
2928ad2antrr 726 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝐶 𝐶) = 0)
3029oveq1d 7446 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 𝐶) + (𝐷 𝐵)) = (0 + (𝐷 𝐵)))
31 hvsubcl 31046 . . . . . . . 8 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐷 𝐵) ∈ ℋ)
32 hvaddlid 31052 . . . . . . . 8 ((𝐷 𝐵) ∈ ℋ → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3331, 32syl 17 . . . . . . 7 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3433adantll 714 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3527, 30, 343eqtrd 2779 . . . . 5 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3635ancoms 458 . . . 4 ((𝐵 ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3736adantll 714 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3823, 37eqeq12d 2751 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
399, 38bitr3d 281 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  (class class class)co 7431  chba 30948   + cva 30949  0c0v 30953   cmv 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-hvsub 31000
This theorem is referenced by:  shuni  31329  cdjreui  32461
  Copyright terms: Public domain W3C validator