HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddsub4 Structured version   Visualization version   GIF version

Theorem hvaddsub4 31110
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))

Proof of Theorem hvaddsub4
StepHypRef Expression
1 hvaddcl 31044 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
21adantr 480 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 + 𝐵) ∈ ℋ)
3 hvaddcl 31044 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 + 𝐷) ∈ ℋ)
43adantl 481 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 + 𝐷) ∈ ℋ)
5 hvaddcl 31044 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 + 𝐵) ∈ ℋ)
65ancoms 458 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐶 + 𝐵) ∈ ℋ)
76ad2ant2lr 747 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 + 𝐵) ∈ ℋ)
8 hvsubcan2 31107 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 + 𝐷) ∈ ℋ ∧ (𝐶 + 𝐵) ∈ ℋ) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
92, 4, 7, 8syl3anc 1371 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
10 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ)
1110anim2i 616 . . . . . . 7 ((𝐶 ∈ ℋ ∧ (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
1211ancoms 458 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
13 hvsub4 31069 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐴 𝐶) + (𝐵 𝐵)))
1412, 13syldan 590 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐴 𝐶) + (𝐵 𝐵)))
15 hvsubid 31058 . . . . . . 7 (𝐵 ∈ ℋ → (𝐵 𝐵) = 0)
1615ad2antlr 726 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (𝐵 𝐵) = 0)
1716oveq2d 7464 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + (𝐵 𝐵)) = ((𝐴 𝐶) + 0))
18 hvsubcl 31049 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐶) ∈ ℋ)
19 ax-hvaddid 31036 . . . . . . 7 ((𝐴 𝐶) ∈ ℋ → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2120adantlr 714 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2214, 17, 213eqtrd 2784 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = (𝐴 𝐶))
2322adantrr 716 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = (𝐴 𝐶))
24 simpl 482 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → 𝐶 ∈ ℋ)
2524anim1i 614 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
26 hvsub4 31069 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = ((𝐶 𝐶) + (𝐷 𝐵)))
2725, 26syldan 590 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = ((𝐶 𝐶) + (𝐷 𝐵)))
28 hvsubid 31058 . . . . . . . 8 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
2928ad2antrr 725 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝐶 𝐶) = 0)
3029oveq1d 7463 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 𝐶) + (𝐷 𝐵)) = (0 + (𝐷 𝐵)))
31 hvsubcl 31049 . . . . . . . 8 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐷 𝐵) ∈ ℋ)
32 hvaddlid 31055 . . . . . . . 8 ((𝐷 𝐵) ∈ ℋ → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3331, 32syl 17 . . . . . . 7 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3433adantll 713 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3527, 30, 343eqtrd 2784 . . . . 5 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3635ancoms 458 . . . 4 ((𝐵 ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3736adantll 713 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3823, 37eqeq12d 2756 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
399, 38bitr3d 281 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  chba 30951   + cva 30952  0c0v 30956   cmv 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-hvsub 31003
This theorem is referenced by:  shuni  31332  cdjreui  32464
  Copyright terms: Public domain W3C validator