HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddsub4 Structured version   Visualization version   GIF version

Theorem hvaddsub4 29728
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))

Proof of Theorem hvaddsub4
StepHypRef Expression
1 hvaddcl 29662 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
21adantr 482 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 + 𝐵) ∈ ℋ)
3 hvaddcl 29662 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 + 𝐷) ∈ ℋ)
43adantl 483 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 + 𝐷) ∈ ℋ)
5 hvaddcl 29662 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 + 𝐵) ∈ ℋ)
65ancoms 460 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐶 + 𝐵) ∈ ℋ)
76ad2ant2lr 746 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 + 𝐵) ∈ ℋ)
8 hvsubcan2 29725 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 + 𝐷) ∈ ℋ ∧ (𝐶 + 𝐵) ∈ ℋ) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
92, 4, 7, 8syl3anc 1371 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
10 simpr 486 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ)
1110anim2i 618 . . . . . . 7 ((𝐶 ∈ ℋ ∧ (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
1211ancoms 460 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
13 hvsub4 29687 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐴 𝐶) + (𝐵 𝐵)))
1412, 13syldan 592 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐴 𝐶) + (𝐵 𝐵)))
15 hvsubid 29676 . . . . . . 7 (𝐵 ∈ ℋ → (𝐵 𝐵) = 0)
1615ad2antlr 725 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (𝐵 𝐵) = 0)
1716oveq2d 7358 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + (𝐵 𝐵)) = ((𝐴 𝐶) + 0))
18 hvsubcl 29667 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐶) ∈ ℋ)
19 ax-hvaddid 29654 . . . . . . 7 ((𝐴 𝐶) ∈ ℋ → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2120adantlr 713 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2214, 17, 213eqtrd 2781 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = (𝐴 𝐶))
2322adantrr 715 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = (𝐴 𝐶))
24 simpl 484 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → 𝐶 ∈ ℋ)
2524anim1i 616 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
26 hvsub4 29687 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = ((𝐶 𝐶) + (𝐷 𝐵)))
2725, 26syldan 592 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = ((𝐶 𝐶) + (𝐷 𝐵)))
28 hvsubid 29676 . . . . . . . 8 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
2928ad2antrr 724 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝐶 𝐶) = 0)
3029oveq1d 7357 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 𝐶) + (𝐷 𝐵)) = (0 + (𝐷 𝐵)))
31 hvsubcl 29667 . . . . . . . 8 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐷 𝐵) ∈ ℋ)
32 hvaddid2 29673 . . . . . . . 8 ((𝐷 𝐵) ∈ ℋ → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3331, 32syl 17 . . . . . . 7 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3433adantll 712 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3527, 30, 343eqtrd 2781 . . . . 5 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3635ancoms 460 . . . 4 ((𝐵 ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3736adantll 712 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3823, 37eqeq12d 2753 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
399, 38bitr3d 281 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  (class class class)co 7342  chba 29569   + cva 29570  0c0v 29574   cmv 29575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-hfvadd 29650  ax-hvcom 29651  ax-hvass 29652  ax-hv0cl 29653  ax-hvaddid 29654  ax-hfvmul 29655  ax-hvmulid 29656  ax-hvmulass 29657  ax-hvdistr1 29658  ax-hvdistr2 29659  ax-hvmul0 29660
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-po 5537  df-so 5538  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-hvsub 29621
This theorem is referenced by:  shuni  29950  cdjreui  31082
  Copyright terms: Public domain W3C validator