HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddsub4 Structured version   Visualization version   GIF version

Theorem hvaddsub4 31064
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))

Proof of Theorem hvaddsub4
StepHypRef Expression
1 hvaddcl 30998 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
21adantr 480 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 + 𝐵) ∈ ℋ)
3 hvaddcl 30998 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 + 𝐷) ∈ ℋ)
43adantl 481 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 + 𝐷) ∈ ℋ)
5 hvaddcl 30998 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 + 𝐵) ∈ ℋ)
65ancoms 458 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐶 + 𝐵) ∈ ℋ)
76ad2ant2lr 748 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 + 𝐵) ∈ ℋ)
8 hvsubcan2 31061 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 + 𝐷) ∈ ℋ ∧ (𝐶 + 𝐵) ∈ ℋ) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
92, 4, 7, 8syl3anc 1373 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 + 𝐵) = (𝐶 + 𝐷)))
10 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ)
1110anim2i 617 . . . . . . 7 ((𝐶 ∈ ℋ ∧ (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
1211ancoms 458 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
13 hvsub4 31023 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐴 𝐶) + (𝐵 𝐵)))
1412, 13syldan 591 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐴 𝐶) + (𝐵 𝐵)))
15 hvsubid 31012 . . . . . . 7 (𝐵 ∈ ℋ → (𝐵 𝐵) = 0)
1615ad2antlr 727 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (𝐵 𝐵) = 0)
1716oveq2d 7426 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + (𝐵 𝐵)) = ((𝐴 𝐶) + 0))
18 hvsubcl 31003 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐶) ∈ ℋ)
19 ax-hvaddid 30990 . . . . . . 7 ((𝐴 𝐶) ∈ ℋ → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2120adantlr 715 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) + 0) = (𝐴 𝐶))
2214, 17, 213eqtrd 2775 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = (𝐴 𝐶))
2322adantrr 717 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐵)) = (𝐴 𝐶))
24 simpl 482 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → 𝐶 ∈ ℋ)
2524anim1i 615 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ))
26 hvsub4 31023 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = ((𝐶 𝐶) + (𝐷 𝐵)))
2725, 26syldan 591 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = ((𝐶 𝐶) + (𝐷 𝐵)))
28 hvsubid 31012 . . . . . . . 8 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
2928ad2antrr 726 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝐶 𝐶) = 0)
3029oveq1d 7425 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 𝐶) + (𝐷 𝐵)) = (0 + (𝐷 𝐵)))
31 hvsubcl 31003 . . . . . . . 8 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐷 𝐵) ∈ ℋ)
32 hvaddlid 31009 . . . . . . . 8 ((𝐷 𝐵) ∈ ℋ → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3331, 32syl 17 . . . . . . 7 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3433adantll 714 . . . . . 6 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (0 + (𝐷 𝐵)) = (𝐷 𝐵))
3527, 30, 343eqtrd 2775 . . . . 5 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3635ancoms 458 . . . 4 ((𝐵 ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3736adantll 714 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐶 + 𝐷) − (𝐶 + 𝐵)) = (𝐷 𝐵))
3823, 37eqeq12d 2752 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) − (𝐶 + 𝐵)) = ((𝐶 + 𝐷) − (𝐶 + 𝐵)) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
399, 38bitr3d 281 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7410  chba 30905   + cva 30906  0c0v 30910   cmv 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmulass 30993  ax-hvdistr1 30994  ax-hvdistr2 30995  ax-hvmul0 30996
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-hvsub 30957
This theorem is referenced by:  shuni  31286  cdjreui  32418
  Copyright terms: Public domain W3C validator