HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem2 Structured version   Visualization version   GIF version

Theorem 3oalem2 28978
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem2
StepHypRef Expression
1 simplll 791 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑥𝐵)
2 simpllr 793 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦𝑅)
3 3oalem1.1 . . . . . . 7 𝐵C
4 3oalem1.2 . . . . . . 7 𝐶C
5 3oalem1.3 . . . . . . 7 𝑅C
6 3oalem1.4 . . . . . . 7 𝑆C
73, 4, 5, 63oalem1 28977 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
8 hvaddsub12 28351 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
983anidm23 1544 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
10 hvsubid 28339 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑤 𝑤) = 0)
1110oveq2d 6858 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝑦 + (𝑤 𝑤)) = (𝑦 + 0))
12 ax-hvaddid 28317 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
1311, 12sylan9eqr 2821 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = 𝑦)
149, 13eqtr3d 2801 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1514ad2ant2l 752 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1615adantlr 706 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
177, 16syl 17 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) = 𝑦)
18 simprlr 798 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑤𝑆)
19 eqtr2 2785 . . . . . . . . . . 11 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
2019oveq1d 6857 . . . . . . . . . 10 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
2120ad2ant2l 752 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
22 simpl 474 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
2322anim1i 608 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
24 hvsub4 28350 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
2523, 24syldan 585 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
26 hvsubid 28339 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑥 𝑥) = 0)
2726ad2antrr 717 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 𝑥) = 0)
2827oveq1d 6857 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 𝑥) + (𝑦 𝑤)) = (0 + (𝑦 𝑤)))
29 hvsubcl 28330 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 𝑤) ∈ ℋ)
30 hvaddid2 28336 . . . . . . . . . . . . . 14 ((𝑦 𝑤) ∈ ℋ → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3129, 30syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3231adantll 705 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3325, 28, 323eqtrd 2803 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
3433ad2ant2rl 755 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
357, 34syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
36 simpr 477 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
37 simpr 477 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
3837anim2i 610 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 hvsub4 28350 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4036, 38, 39syl2anc 579 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4110ad2antll 720 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 𝑤) = 0)
4241oveq2d 6858 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + (𝑤 𝑤)) = ((𝑧 𝑥) + 0))
43 hvsubcl 28330 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑧 𝑥) ∈ ℋ)
44 ax-hvaddid 28317 . . . . . . . . . . . . . . . 16 ((𝑧 𝑥) ∈ ℋ → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4543, 44syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4645ancoms 450 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4746adantrr 708 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4840, 42, 473eqtrd 2803 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
4948adantlr 706 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5049adantlr 706 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
517, 50syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5221, 35, 513eqtr3d 2807 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) = (𝑧 𝑥))
53 simpll 783 . . . . . . . . 9 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥𝐵)
54 simpll 783 . . . . . . . . 9 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑧𝐶)
554chshii 28540 . . . . . . . . . . . 12 𝐶S
563chshii 28540 . . . . . . . . . . . 12 𝐵S
5755, 56shsvsi 28682 . . . . . . . . . . 11 ((𝑧𝐶𝑥𝐵) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5857ancoms 450 . . . . . . . . . 10 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5956, 55shscomi 28678 . . . . . . . . . 10 (𝐵 + 𝐶) = (𝐶 + 𝐵)
6058, 59syl6eleqr 2855 . . . . . . . . 9 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6153, 54, 60syl2an 589 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6252, 61eqeltrd 2844 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝐵 + 𝐶))
63 simplr 785 . . . . . . . 8 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑦𝑅)
64 simplr 785 . . . . . . . 8 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑤𝑆)
655chshii 28540 . . . . . . . . 9 𝑅S
666chshii 28540 . . . . . . . . 9 𝑆S
6765, 66shsvsi 28682 . . . . . . . 8 ((𝑦𝑅𝑤𝑆) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6863, 64, 67syl2an 589 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6962, 68elind 3960 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))
7056, 55shscli 28632 . . . . . . . 8 (𝐵 + 𝐶) ∈ S
7165, 66shscli 28632 . . . . . . . 8 (𝑅 + 𝑆) ∈ S
7270, 71shincli 28677 . . . . . . 7 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ∈ S
7366, 72shsvai 28679 . . . . . 6 ((𝑤𝑆 ∧ (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7418, 69, 73syl2anc 579 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7517, 74eqeltrrd 2845 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
762, 75elind 3960 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
7766, 72shscli 28632 . . . . 5 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ∈ S
7865, 77shincli 28677 . . . 4 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ∈ S
7956, 78shsvai 28679 . . 3 ((𝑥𝐵𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
801, 76, 79syl2anc 579 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
81 eleq1 2832 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8281ad2antlr 718 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8380, 82mpbird 248 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  cin 3731  (class class class)co 6842  chba 28232   + cva 28233  0c0v 28237   cmv 28238   C cch 28242   + cph 28244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-hilex 28312  ax-hfvadd 28313  ax-hvcom 28314  ax-hvass 28315  ax-hv0cl 28316  ax-hvaddid 28317  ax-hfvmul 28318  ax-hvmulid 28319  ax-hvdistr1 28321  ax-hvdistr2 28322  ax-hvmul0 28323
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-ltxr 10333  df-sub 10522  df-neg 10523  df-nn 11275  df-grpo 27804  df-ablo 27856  df-hvsub 28284  df-hlim 28285  df-sh 28520  df-ch 28534  df-shs 28623
This theorem is referenced by:  3oalem3  28979
  Copyright terms: Public domain W3C validator