HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem2 Structured version   Visualization version   GIF version

Theorem 3oalem2 29367
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem2
StepHypRef Expression
1 simplll 771 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑥𝐵)
2 simpllr 772 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦𝑅)
3 3oalem1.1 . . . . . . 7 𝐵C
4 3oalem1.2 . . . . . . 7 𝐶C
5 3oalem1.3 . . . . . . 7 𝑅C
6 3oalem1.4 . . . . . . 7 𝑆C
73, 4, 5, 63oalem1 29366 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
8 hvaddsub12 28742 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
983anidm23 1413 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
10 hvsubid 28730 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑤 𝑤) = 0)
1110oveq2d 7161 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝑦 + (𝑤 𝑤)) = (𝑦 + 0))
12 ax-hvaddid 28708 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
1311, 12sylan9eqr 2875 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = 𝑦)
149, 13eqtr3d 2855 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1514ad2ant2l 742 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1615adantlr 711 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
177, 16syl 17 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) = 𝑦)
18 simprlr 776 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑤𝑆)
19 eqtr2 2839 . . . . . . . . . . 11 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
2019oveq1d 7160 . . . . . . . . . 10 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
2120ad2ant2l 742 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
22 simpl 483 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
2322anim1i 614 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
24 hvsub4 28741 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
2523, 24syldan 591 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
26 hvsubid 28730 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑥 𝑥) = 0)
2726ad2antrr 722 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 𝑥) = 0)
2827oveq1d 7160 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 𝑥) + (𝑦 𝑤)) = (0 + (𝑦 𝑤)))
29 hvsubcl 28721 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 𝑤) ∈ ℋ)
30 hvaddid2 28727 . . . . . . . . . . . . . 14 ((𝑦 𝑤) ∈ ℋ → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3129, 30syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3231adantll 710 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3325, 28, 323eqtrd 2857 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
3433ad2ant2rl 745 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
357, 34syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
36 simpr 485 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
37 simpr 485 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
3837anim2i 616 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 hvsub4 28741 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4036, 38, 39syl2anc 584 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4110ad2antll 725 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 𝑤) = 0)
4241oveq2d 7161 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + (𝑤 𝑤)) = ((𝑧 𝑥) + 0))
43 hvsubcl 28721 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑧 𝑥) ∈ ℋ)
44 ax-hvaddid 28708 . . . . . . . . . . . . . . . 16 ((𝑧 𝑥) ∈ ℋ → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4543, 44syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4645ancoms 459 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4746adantrr 713 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4840, 42, 473eqtrd 2857 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
4948adantlr 711 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5049adantlr 711 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
517, 50syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5221, 35, 513eqtr3d 2861 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) = (𝑧 𝑥))
53 simpll 763 . . . . . . . . 9 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥𝐵)
54 simpll 763 . . . . . . . . 9 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑧𝐶)
554chshii 28931 . . . . . . . . . . . 12 𝐶S
563chshii 28931 . . . . . . . . . . . 12 𝐵S
5755, 56shsvsi 29071 . . . . . . . . . . 11 ((𝑧𝐶𝑥𝐵) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5857ancoms 459 . . . . . . . . . 10 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5956, 55shscomi 29067 . . . . . . . . . 10 (𝐵 + 𝐶) = (𝐶 + 𝐵)
6058, 59eleqtrrdi 2921 . . . . . . . . 9 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6153, 54, 60syl2an 595 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6252, 61eqeltrd 2910 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝐵 + 𝐶))
63 simplr 765 . . . . . . . 8 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑦𝑅)
64 simplr 765 . . . . . . . 8 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑤𝑆)
655chshii 28931 . . . . . . . . 9 𝑅S
666chshii 28931 . . . . . . . . 9 𝑆S
6765, 66shsvsi 29071 . . . . . . . 8 ((𝑦𝑅𝑤𝑆) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6863, 64, 67syl2an 595 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6962, 68elind 4168 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))
7056, 55shscli 29021 . . . . . . . 8 (𝐵 + 𝐶) ∈ S
7165, 66shscli 29021 . . . . . . . 8 (𝑅 + 𝑆) ∈ S
7270, 71shincli 29066 . . . . . . 7 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ∈ S
7366, 72shsvai 29068 . . . . . 6 ((𝑤𝑆 ∧ (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7418, 69, 73syl2anc 584 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7517, 74eqeltrrd 2911 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
762, 75elind 4168 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
7766, 72shscli 29021 . . . . 5 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ∈ S
7865, 77shincli 29066 . . . 4 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ∈ S
7956, 78shsvai 29068 . . 3 ((𝑥𝐵𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
801, 76, 79syl2anc 584 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
81 eleq1 2897 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8281ad2antlr 723 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8380, 82mpbird 258 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  cin 3932  (class class class)co 7145  chba 28623   + cva 28624  0c0v 28628   cmv 28629   C cch 28633   + cph 28635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvdistr1 28712  ax-hvdistr2 28713  ax-hvmul0 28714
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-nn 11627  df-grpo 28197  df-ablo 28249  df-hvsub 28675  df-hlim 28676  df-sh 28911  df-ch 28925  df-shs 29012
This theorem is referenced by:  3oalem3  29368
  Copyright terms: Public domain W3C validator