HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem2 Structured version   Visualization version   GIF version

Theorem 3oalem2 29446
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem2
StepHypRef Expression
1 simplll 774 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑥𝐵)
2 simpllr 775 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦𝑅)
3 3oalem1.1 . . . . . . 7 𝐵C
4 3oalem1.2 . . . . . . 7 𝐶C
5 3oalem1.3 . . . . . . 7 𝑅C
6 3oalem1.4 . . . . . . 7 𝑆C
73, 4, 5, 63oalem1 29445 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
8 hvaddsub12 28821 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
983anidm23 1418 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
10 hvsubid 28809 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑤 𝑤) = 0)
1110oveq2d 7151 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝑦 + (𝑤 𝑤)) = (𝑦 + 0))
12 ax-hvaddid 28787 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
1311, 12sylan9eqr 2855 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = 𝑦)
149, 13eqtr3d 2835 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1514ad2ant2l 745 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1615adantlr 714 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
177, 16syl 17 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) = 𝑦)
18 simprlr 779 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑤𝑆)
19 eqtr2 2819 . . . . . . . . . . 11 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
2019oveq1d 7150 . . . . . . . . . 10 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
2120ad2ant2l 745 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
22 simpl 486 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
2322anim1i 617 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
24 hvsub4 28820 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
2523, 24syldan 594 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
26 hvsubid 28809 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑥 𝑥) = 0)
2726ad2antrr 725 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 𝑥) = 0)
2827oveq1d 7150 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 𝑥) + (𝑦 𝑤)) = (0 + (𝑦 𝑤)))
29 hvsubcl 28800 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 𝑤) ∈ ℋ)
30 hvaddid2 28806 . . . . . . . . . . . . . 14 ((𝑦 𝑤) ∈ ℋ → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3129, 30syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3231adantll 713 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3325, 28, 323eqtrd 2837 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
3433ad2ant2rl 748 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
357, 34syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
36 simpr 488 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
37 simpr 488 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
3837anim2i 619 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 hvsub4 28820 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4036, 38, 39syl2anc 587 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4110ad2antll 728 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 𝑤) = 0)
4241oveq2d 7151 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + (𝑤 𝑤)) = ((𝑧 𝑥) + 0))
43 hvsubcl 28800 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑧 𝑥) ∈ ℋ)
44 ax-hvaddid 28787 . . . . . . . . . . . . . . . 16 ((𝑧 𝑥) ∈ ℋ → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4543, 44syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4645ancoms 462 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4746adantrr 716 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4840, 42, 473eqtrd 2837 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
4948adantlr 714 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5049adantlr 714 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
517, 50syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5221, 35, 513eqtr3d 2841 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) = (𝑧 𝑥))
53 simpll 766 . . . . . . . . 9 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥𝐵)
54 simpll 766 . . . . . . . . 9 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑧𝐶)
554chshii 29010 . . . . . . . . . . . 12 𝐶S
563chshii 29010 . . . . . . . . . . . 12 𝐵S
5755, 56shsvsi 29150 . . . . . . . . . . 11 ((𝑧𝐶𝑥𝐵) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5857ancoms 462 . . . . . . . . . 10 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5956, 55shscomi 29146 . . . . . . . . . 10 (𝐵 + 𝐶) = (𝐶 + 𝐵)
6058, 59eleqtrrdi 2901 . . . . . . . . 9 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6153, 54, 60syl2an 598 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6252, 61eqeltrd 2890 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝐵 + 𝐶))
63 simplr 768 . . . . . . . 8 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑦𝑅)
64 simplr 768 . . . . . . . 8 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑤𝑆)
655chshii 29010 . . . . . . . . 9 𝑅S
666chshii 29010 . . . . . . . . 9 𝑆S
6765, 66shsvsi 29150 . . . . . . . 8 ((𝑦𝑅𝑤𝑆) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6863, 64, 67syl2an 598 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6962, 68elind 4121 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))
7056, 55shscli 29100 . . . . . . . 8 (𝐵 + 𝐶) ∈ S
7165, 66shscli 29100 . . . . . . . 8 (𝑅 + 𝑆) ∈ S
7270, 71shincli 29145 . . . . . . 7 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ∈ S
7366, 72shsvai 29147 . . . . . 6 ((𝑤𝑆 ∧ (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7418, 69, 73syl2anc 587 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7517, 74eqeltrrd 2891 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
762, 75elind 4121 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
7766, 72shscli 29100 . . . . 5 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ∈ S
7865, 77shincli 29145 . . . 4 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ∈ S
7956, 78shsvai 29147 . . 3 ((𝑥𝐵𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
801, 76, 79syl2anc 587 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
81 eleq1 2877 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8281ad2antlr 726 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8380, 82mpbird 260 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cin 3880  (class class class)co 7135  chba 28702   + cva 28703  0c0v 28707   cmv 28708   C cch 28712   + cph 28714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-nn 11626  df-grpo 28276  df-ablo 28328  df-hvsub 28754  df-hlim 28755  df-sh 28990  df-ch 29004  df-shs 29091
This theorem is referenced by:  3oalem3  29447
  Copyright terms: Public domain W3C validator