HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem2 Structured version   Visualization version   GIF version

Theorem 3oalem2 31643
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem2
StepHypRef Expression
1 simplll 774 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑥𝐵)
2 simpllr 775 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦𝑅)
3 3oalem1.1 . . . . . . 7 𝐵C
4 3oalem1.2 . . . . . . 7 𝐶C
5 3oalem1.3 . . . . . . 7 𝑅C
6 3oalem1.4 . . . . . . 7 𝑆C
73, 4, 5, 63oalem1 31642 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
8 hvaddsub12 31018 . . . . . . . . . 10 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
983anidm23 1423 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = (𝑤 + (𝑦 𝑤)))
10 hvsubid 31006 . . . . . . . . . . 11 (𝑤 ∈ ℋ → (𝑤 𝑤) = 0)
1110oveq2d 7362 . . . . . . . . . 10 (𝑤 ∈ ℋ → (𝑦 + (𝑤 𝑤)) = (𝑦 + 0))
12 ax-hvaddid 30984 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
1311, 12sylan9eqr 2788 . . . . . . . . 9 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 + (𝑤 𝑤)) = 𝑦)
149, 13eqtr3d 2768 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1514ad2ant2l 746 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
1615adantlr 715 . . . . . 6 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 + (𝑦 𝑤)) = 𝑦)
177, 16syl 17 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) = 𝑦)
18 simprlr 779 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑤𝑆)
19 eqtr2 2752 . . . . . . . . . . 11 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
2019oveq1d 7361 . . . . . . . . . 10 ((𝑣 = (𝑥 + 𝑦) ∧ 𝑣 = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
2120ad2ant2l 746 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑧 + 𝑤) − (𝑥 + 𝑤)))
22 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
2322anim1i 615 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
24 hvsub4 31017 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
2523, 24syldan 591 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = ((𝑥 𝑥) + (𝑦 𝑤)))
26 hvsubid 31006 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑥 𝑥) = 0)
2726ad2antrr 726 . . . . . . . . . . . . 13 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥 𝑥) = 0)
2827oveq1d 7361 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 𝑥) + (𝑦 𝑤)) = (0 + (𝑦 𝑤)))
29 hvsubcl 30997 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑦 𝑤) ∈ ℋ)
30 hvaddlid 31003 . . . . . . . . . . . . . 14 ((𝑦 𝑤) ∈ ℋ → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3129, 30syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3231adantll 714 . . . . . . . . . . . 12 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (0 + (𝑦 𝑤)) = (𝑦 𝑤))
3325, 28, 323eqtrd 2770 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
3433ad2ant2rl 749 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
357, 34syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑥 + 𝑦) − (𝑥 + 𝑤)) = (𝑦 𝑤))
36 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
37 simpr 484 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
3837anim2i 617 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ))
39 hvsub4 31017 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4036, 38, 39syl2anc 584 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = ((𝑧 𝑥) + (𝑤 𝑤)))
4110ad2antll 729 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → (𝑤 𝑤) = 0)
4241oveq2d 7362 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + (𝑤 𝑤)) = ((𝑧 𝑥) + 0))
43 hvsubcl 30997 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑧 𝑥) ∈ ℋ)
44 ax-hvaddid 30984 . . . . . . . . . . . . . . . 16 ((𝑧 𝑥) ∈ ℋ → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4543, 44syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4645ancoms 458 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4746adantrr 717 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 𝑥) + 0) = (𝑧 𝑥))
4840, 42, 473eqtrd 2770 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
4948adantlr 715 . . . . . . . . . . 11 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5049adantlr 715 . . . . . . . . . 10 ((((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
517, 50syl 17 . . . . . . . . 9 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → ((𝑧 + 𝑤) − (𝑥 + 𝑤)) = (𝑧 𝑥))
5221, 35, 513eqtr3d 2774 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) = (𝑧 𝑥))
53 simpll 766 . . . . . . . . 9 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥𝐵)
54 simpll 766 . . . . . . . . 9 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑧𝐶)
554chshii 31207 . . . . . . . . . . . 12 𝐶S
563chshii 31207 . . . . . . . . . . . 12 𝐵S
5755, 56shsvsi 31347 . . . . . . . . . . 11 ((𝑧𝐶𝑥𝐵) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5857ancoms 458 . . . . . . . . . 10 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐶 + 𝐵))
5956, 55shscomi 31343 . . . . . . . . . 10 (𝐵 + 𝐶) = (𝐶 + 𝐵)
6058, 59eleqtrrdi 2842 . . . . . . . . 9 ((𝑥𝐵𝑧𝐶) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6153, 54, 60syl2an 596 . . . . . . . 8 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑧 𝑥) ∈ (𝐵 + 𝐶))
6252, 61eqeltrd 2831 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝐵 + 𝐶))
63 simplr 768 . . . . . . . 8 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑦𝑅)
64 simplr 768 . . . . . . . 8 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → 𝑤𝑆)
655chshii 31207 . . . . . . . . 9 𝑅S
666chshii 31207 . . . . . . . . 9 𝑆S
6765, 66shsvsi 31347 . . . . . . . 8 ((𝑦𝑅𝑤𝑆) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6863, 64, 67syl2an 596 . . . . . . 7 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ (𝑅 + 𝑆))
6962, 68elind 4147 . . . . . 6 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))
7056, 55shscli 31297 . . . . . . . 8 (𝐵 + 𝐶) ∈ S
7165, 66shscli 31297 . . . . . . . 8 (𝑅 + 𝑆) ∈ S
7270, 71shincli 31342 . . . . . . 7 ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)) ∈ S
7366, 72shsvai 31344 . . . . . 6 ((𝑤𝑆 ∧ (𝑦 𝑤) ∈ ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7418, 69, 73syl2anc 584 . . . . 5 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑤 + (𝑦 𝑤)) ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
7517, 74eqeltrrd 2832 . . . 4 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))
762, 75elind 4147 . . 3 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))
7766, 72shscli 31297 . . . . 5 (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))) ∈ S
7865, 77shincli 31342 . . . 4 (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))) ∈ S
7956, 78shsvai 31344 . . 3 ((𝑥𝐵𝑦 ∈ (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
801, 76, 79syl2anc 584 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
81 eleq1 2819 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8281ad2antlr 727 . 2 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆)))))))
8380, 82mpbird 257 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → 𝑣 ∈ (𝐵 + (𝑅 ∩ (𝑆 + ((𝐵 + 𝐶) ∩ (𝑅 + 𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3896  (class class class)co 7346  chba 30899   + cva 30900  0c0v 30904   cmv 30905   C cch 30909   + cph 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-nn 12126  df-grpo 30473  df-ablo 30525  df-hvsub 30951  df-hlim 30952  df-sh 31187  df-ch 31201  df-shs 31288
This theorem is referenced by:  3oalem3  31644
  Copyright terms: Public domain W3C validator