Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  shunssi Structured version   Visualization version   GIF version

Theorem shunssi 29149
 Description: Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
Assertion
Ref Expression
shunssi (𝐴𝐵) ⊆ (𝐴 + 𝐵)

Proof of Theorem shunssi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shincl.1 . . . . . . 7 𝐴S
21sheli 28995 . . . . . 6 (𝑥𝐴𝑥 ∈ ℋ)
3 ax-hvaddid 28785 . . . . . . 7 (𝑥 ∈ ℋ → (𝑥 + 0) = 𝑥)
43eqcomd 2830 . . . . . 6 (𝑥 ∈ ℋ → 𝑥 = (𝑥 + 0))
52, 4syl 17 . . . . 5 (𝑥𝐴𝑥 = (𝑥 + 0))
6 shincl.2 . . . . . . 7 𝐵S
7 sh0 28997 . . . . . . 7 (𝐵S → 0𝐵)
86, 7ax-mp 5 . . . . . 6 0𝐵
9 rspceov 7193 . . . . . 6 ((𝑥𝐴 ∧ 0𝐵𝑥 = (𝑥 + 0)) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
108, 9mp3an2 1446 . . . . 5 ((𝑥𝐴𝑥 = (𝑥 + 0)) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
115, 10mpdan 686 . . . 4 (𝑥𝐴 → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
126sheli 28995 . . . . . 6 (𝑥𝐵𝑥 ∈ ℋ)
13 hvaddid2 28804 . . . . . . 7 (𝑥 ∈ ℋ → (0 + 𝑥) = 𝑥)
1413eqcomd 2830 . . . . . 6 (𝑥 ∈ ℋ → 𝑥 = (0 + 𝑥))
1512, 14syl 17 . . . . 5 (𝑥𝐵𝑥 = (0 + 𝑥))
16 sh0 28997 . . . . . . 7 (𝐴S → 0𝐴)
171, 16ax-mp 5 . . . . . 6 0𝐴
18 rspceov 7193 . . . . . 6 ((0𝐴𝑥𝐵𝑥 = (0 + 𝑥)) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
1917, 18mp3an1 1445 . . . . 5 ((𝑥𝐵𝑥 = (0 + 𝑥)) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
2015, 19mpdan 686 . . . 4 (𝑥𝐵 → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
2111, 20jaoi 854 . . 3 ((𝑥𝐴𝑥𝐵) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
22 elun 4111 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
231, 6shseli 29097 . . 3 (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
2421, 22, 233imtr4i 295 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ (𝐴 + 𝐵))
2524ssriv 3957 1 (𝐴𝐵) ⊆ (𝐴 + 𝐵)
 Colors of variables: wff setvar class Syntax hints:   ∨ wo 844   = wceq 1538   ∈ wcel 2115  ∃wrex 3134   ∪ cun 3917   ⊆ wss 3919  (class class class)co 7146   ℋchba 28700   +ℎ cva 28701  0ℎc0v 28705   Sℋ csh 28709   +ℋ cph 28712 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-hilex 28780  ax-hfvadd 28781  ax-hvcom 28782  ax-hvass 28783  ax-hv0cl 28784  ax-hvaddid 28785  ax-hfvmul 28786  ax-hvmulid 28787  ax-hvdistr2 28790  ax-hvmul0 28791 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-sub 10866  df-neg 10867  df-grpo 28274  df-ablo 28326  df-hvsub 28752  df-sh 28988  df-shs 29089 This theorem is referenced by:  shsval2i  29168  shjshsi  29273  spanuni  29325
 Copyright terms: Public domain W3C validator