![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shunssi | Structured version Visualization version GIF version |
Description: Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shunssi | ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . . . . 7 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | sheli 30735 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ) |
3 | ax-hvaddid 30525 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ 0ℎ) = 𝑥) | |
4 | 3 | eqcomd 2737 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 = (𝑥 +ℎ 0ℎ)) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 = (𝑥 +ℎ 0ℎ)) |
6 | shincl.2 | . . . . . . 7 ⊢ 𝐵 ∈ Sℋ | |
7 | sh0 30737 | . . . . . . 7 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ 0ℎ ∈ 𝐵 |
9 | rspceov 7459 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ∧ 𝑥 = (𝑥 +ℎ 0ℎ)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) | |
10 | 8, 9 | mp3an2 1448 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = (𝑥 +ℎ 0ℎ)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
11 | 5, 10 | mpdan 684 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
12 | 6 | sheli 30735 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
13 | hvaddlid 30544 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
14 | 13 | eqcomd 2737 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 = (0ℎ +ℎ 𝑥)) |
15 | 12, 14 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0ℎ +ℎ 𝑥)) |
16 | sh0 30737 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
17 | 1, 16 | ax-mp 5 | . . . . . 6 ⊢ 0ℎ ∈ 𝐴 |
18 | rspceov 7459 | . . . . . 6 ⊢ ((0ℎ ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 = (0ℎ +ℎ 𝑥)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) | |
19 | 17, 18 | mp3an1 1447 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = (0ℎ +ℎ 𝑥)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
20 | 15, 19 | mpdan 684 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
21 | 11, 20 | jaoi 854 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
22 | elun 4148 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
23 | 1, 6 | shseli 30837 | . . 3 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
24 | 21, 22, 23 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ (𝐴 +ℋ 𝐵)) |
25 | 24 | ssriv 3986 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∪ cun 3946 ⊆ wss 3948 (class class class)co 7412 ℋchba 30440 +ℎ cva 30441 0ℎc0v 30445 Sℋ csh 30449 +ℋ cph 30452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-hilex 30520 ax-hfvadd 30521 ax-hvcom 30522 ax-hvass 30523 ax-hv0cl 30524 ax-hvaddid 30525 ax-hfvmul 30526 ax-hvmulid 30527 ax-hvdistr2 30530 ax-hvmul0 30531 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-sub 11451 df-neg 11452 df-grpo 30014 df-ablo 30066 df-hvsub 30492 df-sh 30728 df-shs 30829 |
This theorem is referenced by: shsval2i 30908 shjshsi 31013 spanuni 31065 |
Copyright terms: Public domain | W3C validator |